
National Institute of Technology Meghalaya

Doctoral Thesis

Architecture-aware Program Analysis
Techniques for Approximate Computing

Author:
Bernard Nongpoh

Supervisor:
Dr. Rajarshi Ray
Co-Supervisor:

Dr. Ansuman Banerjee

A thesis submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in the

Department of Computer Science & Engineering
National Institute of Technology Meghalaya

February 2020

http://www.nitm.ac.in
https://bernardnongpoh.github.io/
http://nitmeghalaya.in/nitm_web/fp/faculty_profile.php?fid=049
https://www.isical.ac.in/~ansuman/index.html
http://nitmeghalaya.in/nitm_web/fp/cse_dept/cse_about.html
http://www.nitm.ac.in

Architecture-aware Program Analysis
Techniques for Approximate Computing

A thesis submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in

Computer Science & Engineering

Submitted by
Bernard Nongpoh

Registration No. P15CS001

Under the supervision of
Dr. Rajarshi Ray (Supervisor)

Assistant Professor, NIT Meghalaya
Dr. Ansuman Banerjee (Co-Supervisor)
Associate Professor, ACMU, ISI-Kolkata

Department of Computer Science & Engineering
National Institute of Technology Meghalaya

Shillong-793003, Meghalaya, India

February 2020

https://bernardnongpoh.github.io/
http://nitmeghalaya.in/nitm_web/fp/faculty_profile.php?fid=049
https://www.isical.ac.in/~ansuman/
http://nitmeghalaya.in/nitm_web/fp/cse_dept/cse_about.html
http://www.nitm.ac.in

i

National Institute of Technology Meghalaya

Abstract
Department of Computer Science & Engineering

Doctor of Philosophy

Architecture-aware Program Analysis Techniques for Approximate Computing

by Bernard Nongpoh

Rising concerns on energy efficiency and lack of a clear roadmap for performance scalability
of modern semiconductor systems have motivated researchers in recent times to look for
alternate computing paradigms that are fundamentally different from the classical ones. The
quest for a scalable computing solution that can ensure performance, energy efficiency,
low latency and acceptable reliability has been a topic of wide research interest both in
academia and industrial research, and several proposals across the computation stack have
been proposed for quite some time. In the last decade, the paradigmof approximate computing
has shown significant promise and prominence in a number of application domains, and is thus
being increasingly adopted across the computing stack, from algorithms to circuits. The main
philosophy driving approximate computing is to derive energy and performance efficiency
by trading accuracy within acceptable limits. An arsenal of approximation techniques have
been proposed in literature, from algorithms, programming languages to circuits. While
approximate computing hasmade inroads into a number of application domains like computer
vision, machine learning, planning etc., a wider adoption is on the anvil. Researchers have
identified an arsenal of challenges to be addressed to make approximate computing the
pervasive computing paradigm. This thesis aims to address some of these challenges with an
objective to make this evolving paradigm more widespread and mainstream.

One of the fundamental challenges in approximate computing is in identifying components
or elements that are suitable candidates for approximation. While on one hand, manual
annotations are unreliable and error-prone, on the other hand, automated tools that can
automatically derive approximable points are yet to evolve as generic solutions, and are
mostly limited to specific application domains. Classifying elements in a given application
as precise or approximable is a key enabler for approximate computing to succeed. A primary
focus of our research is in devising a principled generic automated workflow for identifying

http://www.nitm.ac.in
http://nitmeghalaya.in/nitm_web/fp/cse_dept/cse_about.html

ii

components of a given application that are amenable to approximation. We propose a
framework to automatically classify data variables and structures in a program as either
approximable or inapproximable, with probabilistic reliability guarantees. Extending the
approximability analysis technique further to handle program instructions, load and branch
instructions in particular, we connect the results of our analysis to the processor runtime,
whereby we setup a coupling with speculative execution to derive more performance benefits
by deviating from the classical philosophy of rollbacks and pipeline flushes when a data
value deemed approximable is mis-speculated or an approximable branch is mis-predicted.
Our results indicate that some approximable loads and branches can be executed without any
execution roll-back in the pipeline and yet can assert a certain user-specified quality of service
with a probabilistic guarantee. Finally, we revisit the coherence requirement in the multi-core
computation stack, wherein the computational load is shared between cores, but the load /
store operations made by one core on the shared data elements are usually made visible to the
other cores at some point to maintain consistency and coherence of computation. Embracing
the approximate computing philosophy, we propose to selectively stop inter-core propagation
of updates made by write instructions on shared data deemed approximable by our analysis.
The goal of this analysis is to look for write instructions on shared data, whose updates if
not communicated to the other cores, do not cause the computation results to deviate beyond
acceptable limits. Using the knowledge of approximate writes on shared data, we propose
modifications on a cache-coherence protocol and show performance benefits in the execution
of multithreaded programs on shared memory multicore architectures.

The key results outlined in this thesis are backed up with extensive experiments on public
domain workloads. Further, we provide comparisons with existing methods in literature to
demonstrate our novelty and performance benefits. We believe that our solutions can have
important ramifications going forward in addressing some of the important challenges in
approximate computing.

Keywords: Program Analysis, Computer Architecture, Approximate Computing.

iii

National Institute of Technology Meghalaya

Declaration of Authorship

I,BernardNongpoh, RegistrationNo. P15CS001declare that this thesis titled, “Architecture-
aware Program Analysis Techniques for Approximate Computing” and the work pre-
sented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research degree at this
University.

• Where any part of this thesis has previously been submitted for a degree or any other
qualification at this University or any other institution, this has been clearly stated.

• Where I have consulted the published work of others, this is always clearly attributed.

• Where I have quoted from the work of others, the source is always given. With the
exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have made clear
exactly what was done by others and what I have contributed myself.

February 11, 2020

Bernard Nongpoh

iv

National Institute of Technology Meghalaya

Certificate of the Supervisor (s)

This is to certify that the thesis titled, “Architecture-aware Program Analysis Techniques
for Approximate Computing” submitted by Mr. Bernard Nongpoh, Registration No.
P15CS001, in partial fulfillment of the requirements for the award of the degree of Doctor
of Philosophy in the Department of Computer Science & Engineering is a record of research
work carried out by him under our supervision and guidance.

All help received by him from various sources have been duly acknowledged.

No part of this thesis has been submitted elsewhere for award of any other degree or diploma.

(Co-Supervisor) (Supervisor)
Dr. Ansuman Banerjee Dr. Rajarshi Ray
Associate Professor Assistant Professor
Advanced Computing & Microelectronics
Unit

Dept. of Computer Science & Engineering

Indian Statistical Institute Kolkata National Institute of Technology Meghalaya

http://nitmeghalaya.in/nitm_web/fp/cse_dept/cse_about.html
https://www.isical.ac.in/
http://www.nitm.ac.in

v

National Institute of Technology Meghalaya

Approval of the Thesis

This is to certify that the thesis titled “Architecture-aware Program Analysis Techniques
for Approximate Computing” has been submitted by Bernard Nongpoh, Registration No.
P15CS001, in fulfillment of the requirements for the degree of Doctor of Philosophy in
the Department of Computer Science & Engineering of National Institute of Technology
Meghalaya.

Supervisor Co-Supervisor

DC members External Examiner(s)

Chairman DC/DRC

http://nitmeghalaya.in/nitm_web/fp/cse_dept/cse_about.html
http://www.nitm.ac.in
http://www.nitm.ac.in

vi

National Institute of Technology Meghalaya

© Copyright by Bernard Nongpoh 2022

I agree that my PhD thesis titled, “Architecture-aware Program Analysis Techniques for
Approximate Computing”will be lodged in the NITMeghalaya Library, andmade available
(if applicable after the expiry of any period of approved restricted access) to any person(s)
entitled to use the Library and may be photocopied or microfilmed by or on behalf of the
Librarian for use for research or private study pursuant to the provisions of the Copyright Act
1968.

I agree that any user of the library may quote extracts from the thesis in any paper or written
work prepared by the user, subject to acknowledging the source of the quotation.

February 11, 2020

Bernard Nongpoh

vii

Acknowledgements
A I am grateful to God almighty for his gracious blessings and granting me good health,

wellbeing and paving the way to pursue and complete this thesis. First, and foremost I would
like to express my deepest gratitude to my Mother (Bei) Mrs. Belinda Nongpoh and to my
Father (Pa) Mr. Martin Lyngdoh for their love, support, and prayer.

I would like to express my sincere gratitude to my supervisor Dr. Rajarshi Ray for his
kindness, patience, motivation, constant effort and support. He has taught me to conduct
quality research with perseverance. My sincere gratitude to my co-supervisor Dr. Ansuman
Banerjee for his generosity, kindness, constant motivation, tremendous support, and effort
throughout the course of my Ph.D. It has been an honor working under two kind-hearted
persons, Dr. Rajarshi Ray, and Dr. Ansuman Banerjee. Thank you Sirs for believing in me.

I would like to thank Mrs. Moumita Das, a Ph.D. student at ISI-Kolkata for her contribution
and collaboration who helped me kick-start the working with an architectural simulator.
My gratitude to my collaborator Mr. Saikat Dutta, a Ph.D. student at the University of
Illinois, Urbana-Champaign, USA for his contribution and especially spending valuable time
in showing me how to work with byte-code instrumentation.

I thank Dr. Himadri Sekhar Paul (External DC member) for his insightful comments and
suggestions. I would also like to thank all DC/DRC members for their feedback and sugges-
tions.

I thank my fellow batchmates and friends: Phrangboklang, Amit, Mercy, Pynbianglut, Anir-
ban, C Lalengmawia, Farhana, Swamy, Mahindra, Wasmir, Mir and Carl for their constructive
discussions and the fun we have had in the last four years.

I take this opportunity to thank the National Institute of Technology Meghalaya for giving
me this golden opportunity, infrastructure, and support in these four years of my study. I
would like to express my gratitude to the Director, Registrar, Deans, HoD (CSE), faculties
and non-teaching staff for their services and help I have received during my Ph.D.

I am grateful and thankful to the Ministry of Electronics and Information Technology, GoI
for their generosity in providing financial assistance through the Visvesvaraya Ph.D. Scheme
without which I would not have been able to pursue my research. I thank Google India
and ACM SIGSOFT for their generosity in providing travel grant for presenting our paper at
ESEC/FSE 2017 conference, Germany.

I am forever grateful to my wife Mrs. Balumlang Mary Kurkalang for believing in me and
her continuous support. I thank all my brothers and my sister for their prayers.

viii

Dedicated to my father, mother, wife and to all my ever
encouraging family members. . .

ix

Contents

Abstract i

Declaration of Authorship iii

Certificate of the Supervisor (s) iv

Approval of the Thesis v

Thesis Copyright vi

Acknowledgements vii

1 Introduction 1
1.1 Motivation and Objectives . 2
1.2 Thesis contributions . 3
1.3 Thesis organization . 5

2 Background and Related Work 6
2.1 Statistical Methods . 6
2.2 Program Analysis . 8

2.2.1 Static Analysis . 9
2.2.2 Data Flow Analysis . 12
2.2.3 Data flow analysis with monotone frameworks 18
2.2.4 Dynamic Program Analysis . 21

2.3 Speculative Execution in modern processors 24
2.3.1 Control Speculation . 25
2.3.2 Data Speculation . 27

2.4 Related Work . 28
2.4.1 Software Techniques for Approximate Computing 28
2.4.2 Hardware and Software Techniques for Approximate Computing . . 39

x

3 Automated Sensitivity Analysis of Program Data Using Dynamic Analysis 43
3.1 Introduction . 43
3.2 Problem Overview . 45
3.3 Detailed Methodology . 48

3.3.1 Fault Injection Model . 50
3.3.2 Solution Methodology . 50
3.3.3 Acceptance Sampling using Hypothesis Testing 51
3.3.4 Sequential Probability Ratio Test 53
3.3.5 Overall Approach . 55

3.4 Implementation . 57
3.5 Evaluation . 58

3.5.1 Applications for Evaluation . 59
3.5.2 QoS Metric . 60
3.5.3 Evaluation of Dynamic Sensitivity Analysis 61
3.5.4 Experimental comparison with other methods 63
3.5.5 Reliability Evaluation . 64
3.5.6 Summary . 66

4 A combined static-dynamic method for sensitivity analysis of program data 68
4.1 Introduction . 68
4.2 Detailed Methodology . 69

4.2.1 Static Analysis for Program Data Sensitivity 69
4.2.2 Combining Static and Dynamic Analysis 73

4.3 Evaluation . 76
4.4 Summary . 77

5 Improving Runtime Efficiency of Programs using Approximate Computing 79
5.1 Introduction . 80
5.2 Methodology . 82
5.3 Motivating Example . 83

5.3.1 Load Instruction . 83
5.3.2 Branch Instruction . 85

5.4 Overall Approach . 86
5.5 Sensitivity Analysis by Hypothesis Testing 87
5.6 Cumulative Sensitivity Analysis using Bayesian Networks 91

5.6.1 Bayesian Networks . 92
5.6.2 The Bayesian Network Structure 94

5.7 Implementation . 96
5.7.1 Pre-execution analysis . 97

xi

5.7.2 Architectural Simulation . 98
5.8 Evaluation . 101

5.8.1 Applications for Evaluation . 101
5.8.2 QoS Metric . 101
5.8.3 Evaluation of Sensitivity Analysis by Hypothesis Testing 103
5.8.4 Evaluation of Sensitivity Analysis Using Bayesian Networks 104
5.8.5 Evaluation of Speculative Execution with Selective Approximation 105
5.8.6 Reliability Evaluation of the Bayesian Analysis–Based Method . . . 109

5.9 Summary . 111

6 Approximate Computing for Multithreaded Programs in Shared Memory Ar-
chitectures 113
6.1 Introduction . 113
6.2 Motivating Example . 115
6.3 Detailed Methodology . 116

6.3.1 Cache Coherence for Multicore Processors 117
6.3.2 MESI Cache Coherence Protocol 118
6.3.3 Our Approach . 123

6.4 Relaxed Cache-Coherence Protocol . 128
6.5 Evaluation . 132

6.5.1 Applications for Evaluation . 132
6.5.2 QoS Metrics . 132
6.5.3 Evaluation of Sensitivity Analysis 133
6.5.4 Performance Evaluation . 133

6.6 Summary . 135

7 Conclusion and Future Directions 137

A Publications 142
A.1 List of Publications . 142
A.2 Awards and Recognition . 142

Bibliography 144

xii

List of Figures

2.1 An assertion to check that the value of y is constant for all runs. 10
2.2 Control flow graph of the C program in Figure 2.1 with each node assigned

with a distinct label. 11
2.3 Static analysis using iterative approximation. 12
2.4 Illustration of the generation of (a) IN set and (b) OUT set [5]. 14
2.5 Simple C program with three integer variables a, b and c. 16
2.6 Hasse diagram representing abstract domain for sign analysis 17
2.7 Forward analysis [30] . 19
2.8 Backward analysis adapted from [30] . 19
2.9 Dynamic binary instrumentation using Pintool 23
2.10 5-stage pipeline processor . 24
2.11 Simple assembly code . 26
2.12 Simple machine code executing in a 5-stage pipeline 26
2.13 5-Stage pipeline with branch predictor . 27
2.14 5-Stage pipeline with value predictor. 28
2.15 Task skipping high level overview . 29
2.16 Ener J assignment statements. 31
2.17 EnerJ endorse function usage example . 31
2.18 EnerJ example in conditions that affect control flow 31
2.19 Overview of ASAC: Automatic Sensitivity Analysis for Approximate Com-

puting Framework [49] . 34
2.20 Overview of loop perforation transformation framework 37
2.21 Load value approximation block diagram 39
2.22 RFVP in GPU micro-architecture . 41

3.1 General approximate computing technique task 45
3.2 Binary search procedure . 47

xiii

3.3 Experiment methodology of a random experiment using fault injection ex-
periment on an image processing application 49

3.4 Indifference Region in Acceptance Testing 54
3.5 Framework of Dynamic Sensitivity Analysis with Hypothesis Testing . . . 56
3.6 Number of Trials vs. Confidence θ in SPRT 63
3.7 Illustrating QoS reliability in Raytracer rendered image with our analysis

guided approximation . 66

4.1 High level overview of our hybrid static-dynamic analysis 69
4.2 Data Sensitivity Lattice . 71
4.3 Control Flow Graph of an Average Routine 74
4.4 Performance of Static-Dynamic Combined Analysis in Comparison to Dy-

namic Analysis . 76

5.1 Code snippet of x264 . 84
5.2 Code snippet of Sobel . 85
5.3 Our methodology of fault injection on an image processing application . . . 88
5.4 A fault injected path shorter than the correct path 88
5.5 Experiment methodology of a random experiment using branch-fault injec-

tion experiment on an image processing application 89
5.6 A Bayesian network with three nodes . 93
5.7 The CFG and the Dominator tree consisting of the approximable branches of

a code snippet from JPEG encoder . 95
5.8 A block diagram depicting the construction of a Bayesian network from a

program. 96
5.9 A schematic of the implementation . 97
5.10 Flowchart to implement the fetch stage for a branch and a load instruction . 99
5.11 Hardware architectural design . 99
5.12 Assembly instructions containing one approximable branch (BNE_APPROX) 100
5.13 Percent gain in CPU cycles with selective no-rollback execution of approx-

imable loads and branches. 107
5.14 Percentage reduction in energy utilization with selective no-rollback execu-

tion of approximable loads and branches. 107
5.15 QoS trade-off in Bodytrack with our method on loads and branches. 108
5.16 QoS comparison with branch faults in approximable branches. (a) Refer-

ence image (b) Image with faults simultaneously in all jointly approximable
branches given by Bayesian analysis and (c) Image with faults simultaneously
in all individually approximable branches given by hypothesis testing . . . 110

xiv

6.1 Exact and approximate execution with a given interleaving. 115
6.2 A 4-core shared memory architecture. The directory is located in the shared

memory. Each block in the memory is associated with a coherence state and
presence bits. 118

6.3 State-transitions in a MESI protocol. 119
6.4 A simple 3-cores processor each with its own local caches managed by a

directory-based MESI cache coherence protocol 122
6.5 Block-diagram of our pre-execution analysis by sensitivity analysis and ISA

extension. 123
6.6 A multi-threaded program with 3 threads accessing variables temp and cnt.

Reads are shown in Black and writes are shown in Red. 125
6.7 A demonstration of coherence fault model 127
6.8 Modified MESI protocol . 129
6.9 A simple 3-core processor managed by a directory-based MESI cache coher-

ence protocol. The protocol behaviour for an approximable-write instruction
is depicted here. 130

6.10 Architectural configuration with SVC attached to L1-D in each core 131
6.11 Performance gain (in %) with Stale Victim Cache (SVC) and SVC + Approx.

CCP . 134
6.12 Cache-misses served by SVC and L1-D cache in SVC, and cache-misses in

our approach (Approx-CCP), and coherence invalidation in our approach . . 134
6.13 Architectural simulation statistics for SVC and Approx CCP in comparison

with exact execution . 135

xv

List of Algorithms

2.1 Reaching definitions Analysis . 14
3.1 Dynamic Sensitivity Analysis . 55
3.2 Testing Sensitivity with Hypothesis Testing 56
5.1 CPT generation by random sampling . 94
6.1 Dynamic Thread Sharing Analysis . 124

xvi

List of Tables

2.1 Final state of IN and OUT set for all nodes l performed by Reaching Defini-
tions Analysis in the C program of Figure 2.1 15

3.1 Dynamic Sensitivity Analysis on Binary Search 57
3.2 Percentage insensitive data reported by our analysis on varying γ and fixed

θ = 0.5 . 62
3.3 Percentage insensitive data reported by our analysis on varying θ and fixed

QoS γ = 0.5 (Scimark2), PSNR=10.5 (Raytracer) and Exact (Jmeint) . . . 62
3.4 Number of trials in dynamic analysis of a single data by varying confidence 63
3.5 Performance comparison of ASAC and our analysis 64
3.6 Percentage of output failing QoS with confidence θ = 0.3 and θ = 0.5 . . . 66

4.1 MFP Iterations for SA of an Averaging Routine 75
4.2 Precision and Recall of the Static-Dynamic Combined Analysis in Compari-

son to Dynamic Analysis . 76

5.1 A subset of load instructions from the annotated segment in x264 and the
corresponding D1 cache miss percentage on a test input. 83

5.2 Branch instructions and the corresponding percentage branch mispredictions
in Sobel on a test input . 85

5.3 Sensitivity analysis results by hypothesis testing. 103
5.4 Application’s jointly approximable branches 105
5.5 System Configuration . 106
5.6 Reliability evaluation of the Bayesian analysis based method 110
5.7 Reliability evaluation of the jointly sensitive data analysis with confidence

θ = 0.6 . 110

6.1 Sensitivity analysis of SWAPs by hypothesis testing. 133
6.2 Architectural configuration used for simulations 134

1

Chapter 1

Introduction

In recent times, it is widely acknowledged that a major transformation is under way in
computer hardware as processors strive to extend and assert their sustenance beyond the
speculated end of Moore’s Law. This has fostered the growth of new forms of heterogeneous
processors, heterogeneous memories, near-memory computation structures, and, in some
cases, computing elements that break free from the Von Neumann philosophy. Additionally,
with energy rapidly becoming a first class citizen of utmost criticality and concern, alternative
computation models that are more energy efficient are being envisioned, and a significant
effort is being harnessed to develop computation paradigms and frameworks that can cater to
the required compute needs, while being cognizant to the energy dissipation metric.

Indeed, computing devices such as mobiles and Internet of Things (IoT) devices have become
ubiquitous today, these devices are required to run under low power constraints. With the
ubiquity of the Internet and explosion in digital data, and proliferation of modern applications
such as computer vision, machine learning, data mining, recognition and search, modern
computing systems are confronted with a sustenance challenge, with an imminent need to
scale in computation power on one hand, and be more energy efficient on the other. This has
spearheaded research on alternate computation models, and approximate computing is one
such effort that has shown significant promise in recent times.

Approximate computing is driven by the observation that most modern applications in ma-
chine learning, computer vision, and multimedia processing do not always require exact or
precise results to be useful; a good enough answer is sufficient and this leaves room for
optimization. Studies [1] reveal that on an average, 83% of the runtime is spent in precise

Chapter 1. Introduction 2

computations that are tolerant to errors in their outputs. Examples include myriads of appli-
cation domains ranging from computer vision, machine learning to robot motion planning.
The motivation driving the approximate compute paradigm is the fact that we can exploit
the inherent resilience of an application for potential performance gain and reduce power
consumption.

Many application domains today deal with computation requirements that have a tolerance
towards errors and approximation. They exhibit a somewhat inherent resilience towards
errors, the property of an application in which parts of its computation or data or both could
entail minor inaccuracies without disturbing the output beyond an acceptable limit. Ap-
proximate computing is a computing paradigm where inaccuracy is allowed in computations
deliberately in controlledmeasures with themotivation of gaining on energy and performance
efficiency. In the approximate computing paradigm, an application output is usually a set
of values (maybe a set of discrete ones or a continuous band), also known as the Quality of
Service (QoS) band. An inaccuracy tolerant application is thus allowed to produce outputs
within this QoS band in the presence of inaccuracies in its computation or data or both. The
inaccuracy tolerance in the applications can arise due to factors like the inability of humans
to perceive noise within limits, inherent nature of approximation in the output etc.

The focus of this thesis is to study and improve on various approximate computing techniques
at the language and micro-architecture level. The main focus is on developing automated
methods for analyzing portions of an application fit to be approximable and approximation
techniques at the micro-architecture to improve the performance of an application. The
following discussion outlines our motivation followed by the contributions and organization
of the thesis.

1.1 Motivation and Objectives

The paradigm of approximate computing is poised at an interesting juncture today, replete
with several open challenges to be addressed. We mention some of them below, that serve as
the primary motivation behind this work.

One of the fundamental challenges in approximate computing today is in identifying com-
ponents or elements that are suitable candidates for approximation. While on one hand,
manual annotations are unreliable and error-prone, on the other hand, automated tools that
can automatically derive approximable points are yet to evolve as generic solutions, and are
mostly limited to specific application domains. Classifying elements in a given application
as precise or approximable is a key enabler for approximate computing to succeed.

Chapter 1. Introduction 3

Designing the appropriate hardware and software abstractions and interfaces for approximate
computing techniques that can cut across the entire compute stack constitutes another impor-
tant challenge. While there has been several proposals for embracing approximate computing
at the programming language level, thereby allowing programmers to mark data elements,
instructions and components that are approximable, proposals for design of approximate
hardware blocks are also abundant in literature. However, an end-to-end solution that can
compound the benefits of the findings derived at the program level, techniques for specifying
and ensuring quality with an efficient means to compose approximate hardware and software
[2] that can cut through the operating system and architecture down to the devices is still not
in place, to the best of our knowledge. While there has been isolated proposals for embracing
approximate computing at each level, we believe connecting the different layers of the stack
requires a different viewpoint altogether. This is a non-trivial challenge considering that the
computation models and principles have to be properly amalgamated to derive the compound
benefits. This serves as another motivation towards our contributions in the later chapters.

Concurrency has been an useful aid for performance enrichment for scalable computation.
The study of approximate computing in the terrain of concurrent computation, more specifi-
cally, concurrent programs, multi-processing and multi-core architectures has not progressed
significantly in literature, to the best of our knowledge. This, in our view, poses an interesting
challenge, considering the fact that ensuring correctness of computation within concurrency
is in itself a major challenge, and requires specific techniques to address factors like races,
coherence and memory consistency. Putting approximate computing on top of concurrency
to ensure a further tolerance in terms of correctness has to be properly defined and dealt with,
and requires careful introspection. Additionally, tying the benefits of approximation in a con-
currency setting inside concurrent compute architectures poses another level of complexity,
and this serves as the motivation for the last contribution of our thesis.

In the following discussion, we mention briefly the contributions of this thesis.

1.2 Thesis contributions

The main contributions of this dissertation are outlined below.

• An automated framework for approximability analysis of program data: In this work,
we propose a method to automatically identify error resilient program variables in
an application with a probabilistic reliability guarantee. Our proposal implements
a combination of dynamic and static analysis methods for sensitivity analysis. The
dynamic analysis is based on statistical hypothesis testing, while the static analysis is
based on classical data flow analysis. Experimental results compare our automated

Chapter 1. Introduction 4

data classification with reported manual annotations on popular benchmarks used in
approximate computing literature. Our framework achieves promising reliability results
compared to manual annotations and earlier methods, as evident from the experimental
results.

• Combining approximate computing with speculative execution: At the architecture
level, a method for enhancing speculative execution with selective approximate com-
puting is proposed. Speculative execution is an optimization technique used in modern
processors by which predicted instructions are executed in advance with an objective
of overlapping the latencies of slow operations. Branch prediction and load value
speculation are examples of speculative execution used in modern pipelined processors
to avoid execution stalls. However, speculative executions incur a performance penalty
as an execution rollback when there is a misprediction. In this work, we propose to
aid speculative execution with approximate computing by relaxing the execution roll-
back penalty associated with a misprediction. Extending on the above framework, we
propose a sensitivity analysis method for data and branches in a program to identify
the data load and branch instructions that can be executed without any rollback in the
pipeline and yet can ensure a certain user-specified quality of service of the application
with a probabilistic reliability. Our analysis is based on statistical methods, particularly
hypothesis testing and Bayesian analysis.

• Approximate computing for multi-threaded programs on multi-cores: To improve the
performance of multithreaded programs running on shared-memory multicore pro-
cessors, we propose to embrace approximate computing by selectively relaxing the
coherence requirement in order to reduce the cost associated with a cache-coherence
protocol. In multicore and multicached architectures, cache coherence is ensured with
a coherence protocol. However, the performance benefits of caching diminishes due
to the cost associated with the protocol implementation. In this work, we propose a
novel technique to improve the performance of multithreaded programs running on
shared-memory multicore processors by embracing approximate computing. Our idea
is to relax the coherence requirement selectively in order to reduce the cost associ-
ated with a cache-coherence protocol, and at the same time, ensure a bounded QoS
degradation with probabilistic reliability. In particular, we detect write instructions in
a multithreaded program that write to shared data, and propose an automated statistical
analysis to identify those which can tolerate coherence faults. To leverage this obser-
vation, we propose an adapted cache-coherence protocol that relaxes the coherence
requirement on stores for these approximable writes. Additionally, our protocol uses
stale values for load misses due to coherence, the stale value being the version at the
time of invalidation.

Chapter 1. Introduction 5

1.3 Thesis organization

This thesis is organized into 6 different chapters. Chapter 2 presents the background and
related work. This chapter discusses existing works and methodologies in applying hard-
ware/software approximate computing techniques. In Chapter 3, we present a technique to
classify parts of the program that can be approximated using the dynamic analysis method.
Chapter 4 presents a static analysis technique using classical data flow analysis. Chapter 5
presents our proposal for enhanced speculative execution for approximate computing. This
chapter discusses a technique for sensitivity analysis of load and branch instructions fol-
lowed by a Bayesian analysis technique to determine the cumulative effects of load/branch
instructions. Chapter 6 presents approximate computing for multithreaded programs. Finally,
Chapter 7 ends with a conclusion and discussion on future directions.

6

Chapter 2

Background and Related Work

In this chapter, we present a brief overview of the background topics needed for the forth-
coming chapters. Further, we survey some of the relevant research literature related to the
contributions of this thesis. The layout of this chapter is as follows: Section 2.1 presents
an overview of the statistical methods used in the algorithms for approximate computing
proposed in this thesis. Section 2.2 introduces program analysis, Section 2.3 discusses in
brief speculative execution, and we conclude with Section 2.4 which discusses some related
work. We begin with a discussion on the statistical methods used in this thesis.

2.1 Statistical Methods

One of the key contribution of this thesis is the connection that it builds between statistical
methods and program analysis. Particularly, the concepts of acceptance sampling, hypothesis
testing, probability distributions, joint probability distribution and Bayesian networks will be
useful to discuss in order to appreciate some of the contributory algorithms presented in the
thesis. We briefly present an exposition of these topics in the discussion below.

Acceptance Sampling: Acceptance sampling is a statistical technique to control quality
of products in any production system. A collection of sample products are taken from
the produced lot and the quality of these samples are tested. Based on the quality of the
sampled lot only, the quality of the entire production system is either accepted for rejected
[3]. Acceptance sampling is the choice of quality control mechanism in industry when

Chapter 2. Background and Related Work 7

testing a product destroys or degrades the product, or when testing each and every product is
prohibitively expensive in terms of time and effort, or the number of products to test is too
large. There are a number of sampling plans that could be employed in acceptance sampling.
Though the sampling is made randomly, the sampling plan fixes the number of samples to
test in order to ensure reasonable confidence of the decision. Acceptance sampling is relevant
to our work because in our context, we consider a sample to be an execution of a program
on a test input, and we intend to accept or reject the quality of a program based on finitely
many test-cases, i.e., samples. We explain in detail the meaning of quality of a program in
Section 3.3.2. Acceptance sampling technique is a good choice for us because for most of the
programs of our interest, there are infinitely many test executions and therefore, exhaustive
testing is not a choice. We now discuss the method of hypothesis testing.

Hypothesis Testing: It is a procedure to test the truth of a hypothesis over a population,
by acceptance sampling. The procedure either accepts the claimed hypothesis or rejects it,
based on the observations made on a limited number of samples from the population. As
an example, we may consider the population to be the collection of products from a factory.
We may then have a hypothesis saying that the quality of any product is acceptable with a
probability at least 0.95. Now, the hypothesis requires testing by one of the testing procedures,
to either accept or reject it. Generally, a hypothesis on a population is denoted by H and
is called the null hypothesis, and H′ denotes the contradictory hypothesis and is called the
contrary hypothesis. For example, in the factory example discussed above, H will refer to
the hypothesis that any factory product is acceptable with a probability at least 0.95. On
the other-hand, the contrary hypothesis H′ will refer to the claim that any factory product is
acceptablewith a probability less than 0.95. Clearly, both H and H′ cannot hold together and
one of them must be true. Our proposed algorithms in the thesis for approximate computing
heavily relies on making hypotheses and testing them. We now briefly discuss one hypothesis
testing procedure briefly, namely, the Sequential Probability Ratio Test, abbreviated as SPRT
in the rest of the thesis. For the details on SPRT, the reader may refer to Section 3.3.3.

Sequential Probability Ratio Test (SPRT): SPRT is one out of the many hypothesis testing
procedures that is proposed by Abraham Wald [4]. Unlike in other testing procedures where
the number of samples are fixed a-priori, the principle behind SPRT is to decide whether
additional samples need to be taken to accept or reject a hypothesis, on the basis of the
previously observed outcomes. It has been shown to use the optimal number of samples to
test a hypothesis under certain conditions. During execution of the procedure, it can take one
of the following decisions:

• Reject the null hypothesis H in favor of the contrary hypothesis H′ and then stop,

• Accept the null hypothesis H and stop,

Chapter 2. Background and Related Work 8

• Fail to reach any conclusion and continue with the next sampling.

As the procedure samples, it keeps a ratio of two probabilities, p and q at the end of observing
k samples. Out of the k samples, let k1 denote the number of acceptable samples. Then, p

is the probability of seeing k1 acceptable samples and k − k1 rejected samples, given that
the probability of observing a random sample to be acceptable is known to be p1. Similarly,
q is the probability of seeing k1 acceptable samples and k − k1 rejected samples, given that
the probability of observing a random sample to be acceptable is known to be p0. The
probabilities p0 and p1 define what is called the indifference region and is discussed in detail
in Section 3.3.4.

p
q
=

p1
k1(1 − p1)

k−k1

pk1
0 (1 − p0)k−k1

(2.1)

The procedure compares this ratio with a predefined constant and terminates by accepting
the hypothesis when this ratio is less than or equal to the constant. This constant is dependent
on what is called the strength of the test. The strength of the test derives its value from the
probability of making a type-I and type-II error by the test procedure. The reader may refer
to Section 3.3.4 for further details of types of errors and strength of test.

2.2 Program Analysis

Program analysis is the process of automatically finding useful facts about programs [5].
It aims to improve software quality in term of reliability, security, and performance. It
provides the tools and algorithms that can analyze other programs. Some of the applications
of program analysis are [6]:

• Security: To check if a program leaks private data of a user [7].

• Bug finding: To expose as many assertion failures as possible [8].

• Verification: To check whether a program is behaving according to its specifications
[9].

• Compiler optimizations: To improve the performance of programs by code transfor-
mations [10].

• Automated parallelization: To automatically convert sequential programs to parallel
versions [11].

• Integrated Development Environment (IDE) support: To assist programmers during
the time of development - assistance such as code suggestion, code completion, code
refactoring and program understanding [12].

Chapter 2. Background and Related Work 9

We now discuss two key properties of a program analysis procedure - soundness and com-
pleteness. In sound analysis, whenever the analysis infers a program to have a property (say
R), R indeed holds for the program. In complete analysis, for every program that has the
property R, the analysis infers R to hold on the program. An unsound analysis can infer
a program to have property R when actually the program does not have the property. An
incomplete analysis may fail to infer a program to have the property R when the program
actually has the property.

Program analysis techniques are broadly classified into three kinds: static, dynamic and
hybrid analyses [5]. In the following sections, we will briefly discuss static and dynamic
analyses.

2.2.1 Static Analysis

Programmers often use software testing techniques to gain confidence on the correctness and
functionality of a program with respect to its specifications. However, as famously quoted
by Edsger W. Dijkstra, "Program testing can be used to show the presence of bugs, but never
to show their absence" [13]. This is because the semantic behavior of a program is observed
only for a limited number of test-inputs. How would a program behave if other test-inputs
remain unknown. On the other hand, static analysis aims to automatically infer semantic
properties of a given program at compilation time that holds true for all executions of the
program [14], and are therefore strong claims. Many of the static analyses problems are
undecidable (e.g. The may alias problem is undecidable [15]). To have decision procedures
for static analysis problems, analysis procedures generally resort to approximations. Some of
the static analysis tools that have proven useful in both industry and academia are:-

• Syntactic and logic errors: Lint [16], FindBugs [17] and Coverity [18]

• Detection of memory leak i.e., failure to deallocate memory when no longer required:
Facebook Infer [19]

• Verifying that software meets the critical behavioral properties of the interfaces it uses,
for example checking API usage rules: Microsoft SLAM [20]

• Verifying invariants: An invariant is a property that is always true in all possible
executions for example ESC/Java [21]

Static analysis usually operates on a suitable intermediate representation of the program. A
common and useful one is the control flow graph [22]. It is a graph that summarizes the
flow of control in all possible runs of the program. Each unique statement in a program
is represented by a node in the graph. Each outgoing edge from a node denotes a possible

Chapter 2. Background and Related Work 10

successor of that node in some possible execution. The control flow graph is a possible
abstraction of a program. Figure 2.1 shows a sample C program and Figure 2.2 shows the
corresponding control flow graph. The program consists of three integer variables x, y, z with
the assertion assert(y==14). This assertion is to check for all possible program executions,
whether the assertion is valid or not. Figure 2.2 shows the control flow graph with each
unique statement represented by a node in the graph. For example, the statement int z=10 in
the program is represented by a node with label 2 i.e., node z=10 in the graph. Generally, a
node is labeled by a positive integer numbered from 0 to N , where N is the number of nodes
in the graph. For simplicity, we label the nodes of the graph with program statements. Static
analysis techniques generally work with abstract states, each of which summarizes a set of
concrete states. For instance, if an analysis requires to track the value of variables x, y and z

of a program in Figure 2.1, the analysis keeps track of the set of values that the variables x, y
and z may attain at each program point. These values are called the abstract states, in contrast
to the concrete values in an actual run. The analysis may fail to accurately represent some
values of the variables in the abstract state. For this kind of approximation, a static analysis
can be incomplete. However, in a sound analysis, the values of the variable represented in
the abstract state implies that they are indeed attainable for all runs of the program. Let us
look into a simple static analysis discussed in Example 2.1.

1 vo id main ()
2 {
3 i n t z =10;
4 i n t y =0;
5 whi l e (t r u e)
6 {
7 i f (x==1) / / h e r e x i s u s e r i n p u t
8 y=z +4;
9 e l s e

10 y =14;
11 a s s e r t (y==14) ;
12 }
13 }
14

Figure 2.1: An assertion to check that the value of y is constant for all runs.

Example 2.1 Consider an analysis that requires to check if a given variable always has a
constant value. In the example code in Figure 2.1, the analysis needs to guarantee that for all
possible executions, the assertion (y==14) in line 11 is indeed true. We now examine how
the analysis discovers invariants 1 of the form (y==14), even for the programs that have an
unbounded number of paths. We will use a common static analysis technique called iterative

1An invariant is a property that is always true in all possible executions.

Chapter 2. Background and Related Work 11

Start

z = 10

y = 0

while (true)

if (x== 1)

y = 14y = z+4

assert (y==14)

tru
e false

1

2

3

4

5

6 7

8

Figure 2.2: Control flow graph of the C program in Figure 2.1 with each node assigned with
a distinct label.

approximation where at each program point, the analysis updates its knowledge of the value
of x, y, and z. This update is based upon the information that has been inferred at the
immediate predecessors of that program point. Figure 2.3 shows how the analysis works and
a step-by-step description is as follows:-

• At the start node, the analysis has no information about the value of x, y, and z. A
symbol ? denotes unknown values.

• Following the start node is the assignment state z = 10, which updates the value of
variable z to 10. Similarly, after the statement y = 0, the value of y is now updated to
0.

• An interesting update occurs in the true branch of the statement i f (x == 1), that checks
whether the value of x is 1. After taking the true branch, the analysis identifies that the
value of x is 1. However, the value of x in the false branch is still unknown.

• After evaluating both the true and false branches, the analysis concludes that the value
of y is 14. At this point, the analysis has concluded that, at each immediate predecessor
of the assertion, the value of y is indeed 14 and hence the assertion is valid.

The analysis might need to visit the same program point multiple times (due to the presence
of loops), hence the term iterative approximation. �

Chapter 2. Background and Related Work 12

Start

z = 10

y = 0

while (true)

if (x== 1)

y = 14y = z+4

assert (y==14)

tru
e false

[x = ?, y = ? , z = ?]

[x = ?, y = ? , z = 10]

[x = ?, y = 0, z = 10]

false [x = ?, y = 0, z = 10]

[x = ?, y = 0, z = 10]

[x = 1, y = 0, z = 10] [x = ?, y = 0, z = 10]

[x = ?, y = 14, z = 10][x = 1, y = 14, z = 10]

Figure 2.3: Static analysis using iterative approximation.

2.2.2 Data Flow Analysis

We present the necessary background related to our proposed static-dynamic combined
sensitivity analysis method in Chapter 4. We first introduce the classical data flow analysis
with an example, followed by lattice theory and then monotone framework for data flow
analysis.

Data flow analysis is a type of static analysis for reasoning about the flow of data in a program
[23]. As is the case for most static analysis approaches, data flow analysis usually operates on
a suitable intermediate representation of the program. It typically operates on a control flow
graph. A control flow graph is a graph that summarizes the flow of control in all possible
runs of a given program. Here, we refer to the data flow analysis techniques which are sound
but incomplete.

There are many methods based on data flow analysis such as, Reaching Definitions Anal-
ysis [24], Available Expressions Analysis [25], Very Busy Expressions Analysis [25], Live
Variable Analysis [26] etc. To demonstrate how a data flow analysis works, we discuss the
Reaching Definitions Analysis in detail.

Chapter 2. Background and Related Work 13

Reaching Definitions Analysis

Reaching definitions analysis is based on data flow analysis [23] and it aims to determine for
each program point, which assignments can reach the point and are not overwritten when
execution reaches that point along some path. An assignment statement is a definition of a
variable.

Example 2.2 Consider an assignment [x = 1;], which assigns 1 to a variable x. This
assignment statement [x = 1;] is a definition of variable x. To identify each program point
uniquely, each node in the control flow graph is assigned with a distinct label. Figure 2.2
shows each node with a label l, where l is a positive integer number ranging from 1 to N .
Here, N is the number of nodes in the graph. For instance, the node with statement z = 10 is
assigned a label 2. �

The reaching definition is then denoted as a pair 〈v, l〉 comprising the name of the defined
variable, say v along with a label, say l of the node that defines it. More formally, for each
node in the control flow graph, we assign a distinct label l. For each node in the graph with
label l, the analysis computes two sets, the IN[l] and the OUT[l] set.

Definition 2.1 IN[l] is the set of facts at the entry of node l. It is the union of the set of facts
at the exit of the nodes’ immediate predecessors in the control flow graph, formally,

IN[l] =
⋃

l ′∈predecessors(l)

OUT[l′]

�

Definition 2.2 OUT[l] is the set of facts at the exit of a particular node. The set of facts at
the exit node l is equal to the set of facts at the entry of node l, minus any definitions that are
overwritten by node l (we called this set as KILL set) and union with any new definitions
that are generated by node l (we called this set as GEN set). Formally,

OUT[l] = (IN[l] − KILL[l])
⋃

GEN[l]

�

Figure 2.4a shows an illustration of the union of OUT set of N predecessors of node l. Figure
2.4b shows the generation of the OUT set at a given node l. Algorithm 2.1 shows a general
reaching definitions analysis algorithm. The algorithm starts by initiating IN and OUT set in
the control flow graph to the empty set. The entry node OUT set denoted by OUT[entry] is
initialized to contain a hypothetical definition for each variable v in the program. ? denotes
that each variable v is undefined or uninitialized at the start of the program. The algorithm

Chapter 2. Background and Related Work 14

1 2 N

l

IN[l] = OUT[1] ∪OUT[2].. ∪OUT[N]
(a)

l

IN[l]

OUT[l]

OUT[l] = (IN[l] − KILL[l]) ∪ GEN[l]
(b)

Figure 2.4: Illustration of the generation of (a) IN set and (b) OUT set [5].

then repeats for each node l to calculate the IN and OUT set of each node l and terminates
when IN and OUT set for all l stops changing. Example 2.3 illustrates a working example
of the algorithm.

Algorithm 2.1 Reaching definitions Analysis
1: for each node l do
2: IN[l] = OUT[l] = φ
3: end for
4: OUT[entry]={< v, ? > : v is a program variable}
5: repeat
6: for each node l do
7: IN[l] =

⋃
l ′∈predecessor(l)OUT[l′]

8: OUT[l] = (IN[l] − KILL[l]) ∪ GEN[l]
9: end for
10: until IN[l] and OUT[l] stop changing for all l

Example 2.3 Consider a C program in Figure 2.1 with the corresponding labeled control
flow graph in Figure 2.2. Our goal is to perform the analysis of the reaching definitions.
Table 2.1 shows the final state of IN and OUT sets for all nodes l. The following is a step by
step description of how the IN and OUT sets are obtained:-

• At the start node, the IN is initially empty. The OUT set is initialized to contain many
variable-label pairs 〈v,?〉 where labels ? denotes unknown.

• After node 2, the variable z is defined. The information 〈z, 2〉 is then updated. The
same applies for variable y at node 3.

• The interesting step is when the analysis encounter loops, for instance during the first
iteration, for the definition of variable y, IN[4] contains only the definition 〈y, 3〉 but
not 〈y, 6〉 and 〈y, 7〉. This information is obtained at the subsequent iterations of the
algorithm by taking the union of the information at nodes 3 and 8.

Chapter 2. Background and Related Work 15

l IN[l] OUT[l]
1 ... [〈x, ?〉, 〈y, ?〉, 〈z, ?〉]
2 [〈x, ?〉, 〈y, ?〉, 〈z, ?〉] [〈x, ?〉, 〈y, ?〉, 〈z, 2〉]
3 [〈x, ?〉, 〈y, ?〉, 〈z, 2〉] [〈x, ?〉, 〈y, 3〉, 〈z, 2〉]
4 [〈x, ?〉, 〈y, 3〉, 〈y, 6〉, 〈y, 7〉, 〈z, 2〉] [〈x, ?〉, 〈y, 3〉, 〈y, 6〉, 〈y, 7〉, 〈z, 2〉]
5 [〈x, ?〉, 〈y, 3〉, 〈y, 6〉, 〈y, 7〉, 〈z, 2〉] [〈x, ?〉, 〈y, 3〉, 〈y, 6〉, 〈y, 7〉, 〈z, 2〉]
6 [〈x, ?〉, 〈y, 3〉, 〈y, 6〉, 〈y, 7〉, 〈z, 2〉] [〈x, ?〉, 〈y, 6〉, 〈z, 2〉]
7 [〈x, ?〉, 〈y, 3〉, 〈y, 6〉, 〈y, 7〉, 〈z, 2〉] [〈x, ?〉, 〈y, 7〉, 〈z, 2〉]
8 [〈x, ?〉, 〈y, 6〉, 〈y, 7〉, 〈z, 2〉] [〈x, ?〉, 〈y, 6〉, 〈y, 7〉, 〈z, 2〉]

Table 2.1: Final state of IN and OUT set for all nodes l performed by Reaching Definitions
Analysis in the C program of Figure 2.1

• At nodes 6 and 7, the definition 〈y, 3〉, 〈y, 6〉 is killed at node 7 and the definition
〈y, 3〉, 〈y, 7〉 is killed at node 6.

• The last node 8 takes the union of nodes 6 and 7. �

Reaching definitions analysis is based on data flow analysis which computes an over-
approximation of the pairs of reaching definitions at any program point. This means that the
analysis reports all actual reaching definition pairs at any program point and may be more.
Speaking in terms of soundness and completeness of the analysis, it is complete but not
sound. The primary source of unsoundness of reaching definitions analysis is due to control
conditions abstraction with non-deterministic choice. By non-deterministic choice, it means
the analysis will assume that the condition may evaluate to either true or false, even if in
actual runs, the condition always evaluates to only true [5]. Due to abstraction of branch
conditions, the analysis will consider all paths that are possible in actual runs and thereby
guarantee completeness, but at the same time consider paths that are never possible in actual
runs, hence the analysis can be unsound.

Designing a sound and complete static analysis is hard and maybe impossible [27]. Approx-
imation comes into rescue by allowing the analysis to reason the program approximately by
providing an abstraction of the program’s behavior. In the next section, we will discuss a
technique for static analysis that is based on the mathematical theory of lattices.

Lattice theory

To motivate why we need lattice theory for our analysis, let us consider a simple analysis that
determines the possible signs of the integer value of variables and expressions in the given
program. In concrete executions, the values of the variables can be any arbitrary integer.
The integer values can be abstracted and grouped into three categories: positive (+), negative

Chapter 2. Background and Related Work 16

(-), and zero (0). The analysis will then operate on the abstract values instead of concrete
values. However, the analysis must be prepared to handle uncertain information, for example,
if the analysis does not know the sign of an expression, then a special abstract value (>)
representing ’don’t know’ is added to represent such a case. There can be information that
has no value in an execution, for example, values that are not numbers but instead pointers.
In this case, a special abstract value (⊥) is added to represent such cases.

Example 2.4 Consider the program in Figure 2.5, where the analysis can conclude that, in
all possible executions, at the end of the program, the variables a and b are positive integer
values. On the other hand, the variable c can be either positive or negative depending on the
value of n which is unknown. The analysis must report > for variable c, since variable c

can be either positive or negative. For this analysis we have an abstract domain comprising
of five abstract values {+,−, 0,>,⊥}. The abstract domain can be organized with the least
precise information at the top and the most precise information at the bottom as shown in
Figure 2.6. The ordering illustrates the facts that ⊥ represents the empty set of integer values
and > represents the set of all integer values. �

1 vo id main ()
2 {
3 i n t a =10;
4 i n t b =20;
5 i n t c ;
6 i f (n==0) / / n i s u s e r i n p u t
7 {
8 c=a+b ;
9 }

10 e l s e
11 {
12 c=a−b ;
13 }
14 }
15

Figure 2.5: Simple C program with three integer variables a, b and c.

We will now study some definitions related to lattice theory.

Definition 2.3 Partially ordered set [14] : A partial ordering is a binary relation v: L ×

L =⇒ {true, f alse} that is :

• Reflexive : ∀l : l v l

• Transitive: ∀l1, l2, l3 : l1 v l2 ∧ l2 v l3 =⇒ l1 v l3

• Anti-Symmetric : ∀l1, l2 : l1 v l2 ∧ l2 v l1 =⇒ l1 = l2

Chapter 2. Background and Related Work 17

>

0

⊥

+ −

Figure 2.6: Hasse diagram representing abstract domain for sign analysis

A partially ordered set (L, v) is a set L equipped with a partial ordering v. �

Definition 2.4 Upper bound [28] :For any S ⊂ L, an upper bound of a set S is any element
x ∈ L such that x ≥ y, ∀y ∈ S. �

Definition 2.5 Lower bound [28] :For any S ⊂ L, a lower bound of a set S is any element
x ∈ L such that x ≤ y, ∀y ∈ S. �

Definition 2.6 Least upper bound [25] : A least upper bound l of Y is an upper bound of Y

that satisfies l v l0 whenever l0 is another upper bound of Y denoted by tY . Sometimes t is
called the Join operator. �

Definition 2.7 Greatest lower bound [25] : A greatest lower bound l of Y is a lower bound
of Y that satisfies l0 v l whenever l0 is another lower bound of Y denoted by uY . Sometimes
u is called the Meet operator. �

Definition 2.8 Complete lattice [25] : A complete lattice L = (L, v,t,u,⊥,>) is a partially
ordered set (L, v)where every subset A of L has both a least upper bound as well as a greatest
lower bound. �

Every lattice has a unique largest element denoted by > and a unique smallest element
denoted by ⊥. The height of the lattice is defined to be the length of the longest path from ⊥
to >. As an example, the height of the sign analysis lattice is 2.

Definition 2.9 Monotone functions [14] : Given a complete lattice L, a set of functions F

on L is said to be a monotone function space associated with L if the following conditions
are satisfied:-

• Each f ∈ F satisfies the monotonicity condition,

(∀x, y ∈ L)(∀ f ∈ F)[x v y =⇒ f (x) v f (y)].

• There exists an identity function I in F, such that

Chapter 2. Background and Related Work 18

(∀x ∈ L)[I(x) = x].

• F is closed under composition, i.e. if f , g ∈ F then the composition f ◦ g ∈ F, where
(∀x, y ∈ L)[f ◦ g(x) = f (g(x))]. �

Definition 2.10 Flow graph [29] : A flow graph is a triple G = (N, E, n0), where:

• (N, E) is a finite directed graph.

• N is a finite set of nodes.

• E ⊆ N × N is the set of edges. The edge (x, y) enters node y and leaves node x, we say
that x is the predecessor of y, and y is a successor of x. The edges represents the flow
of control or data in the program.

• n0 in N is the initial node. �

2.2.3 Data flow analysis with monotone frameworks

Classical dataflow analysis starts with a control flow graph and a lattice with finite height.
For every node v in the control flow graph, a variable is assigned ranging over the elements
of a lattice. A dataflow constraint is then defined for each node that relates the value of
the variable of the node to other nodes. If all the constraints happen to be equations or
in-equations with monotone right-hand sides, then a fixed point algorithm can be used to
compute the analysis result as the unique least solution [14]. A dataflow analysis is required
to compute the following information during the analysis:-

• Aentry(l) is the information that holds at the entry of a block.

• Aexit(l) is the information that holds at the exit of a block.

• kill(l) holds information that is removed from the input.

• gen(l) holds the information that is added to the input.

Data flow analysis can be broadly classified into the following categories [14]:-

ForwardMayDataflowAnalysis: At each programpoint, the forwardmay analysis computes
information that holds at some path reaching the point starting from the initial node and
following the edges of the flow graph. Figure 2.7 shows a diagram illustrating the forward
data flow analysis. The analysis starts at the entry node and propagates information forward
in the control flow graph. The analysis computes the following information:-

Chapter 2. Background and Related Work 19

Aentry(l) =
⋃
li 7→l

Aexit(li) (2.2)

Aexit(l) = (Aentry(l) − kill(l))
⋃

gen(l) (2.3)

Aentry(l) is computed as a union of all that may hold at the previous blocks. Aexit(l) is
computed as the union of all facts at the previous blocks minus the facts that no longer hold
in this block, union with the facts that are generated in this block.

Aentry
(l)

Aexit
(l)

Aexit
(l)

Aexit
(l)

Figure 2.7: Forward analysis [30]

Backward May Data Flow Analysis: At each program point, the Backward May Data Flow
Analysis computes information that holds at some path reaching the point starting from a
terminal node and following the edges of the flow graph in the reverse direction. Figure 2.8
shows a diagram illustrating the backward data flow analysis. The analysis computes the
following information:-

Aentry(l) = (Aexit(l) − kill(l))
⋃

gen(l) (2.4)

Aexit(l) =
⋃
li 7→l

Aentry(li) (2.5)

Aentry
(l)

Aexit
(l)

Aentry
(l) Aentry

(l)

Figure 2.8: Backward analysis adapted from [30]

Forward Must Dataflow Analysis: At each program point, the forward must dataflow
analysis looks for information that holds at all the paths reaching the program point starting
from the initial program point and following the forward control flow edges. The analysis
computes the following information:-

Chapter 2. Background and Related Work 20

Aentry(l) =
⋂
li 7→l

Aexit(li) (2.6)

Aexit(l) = (Aentry(l) − kill(l))
⋃

gen(l) (2.7)

Backward Must Dataflow Analysis: At each program point, Backward must dataflow
analysis computes information that must hold at a program point by all of the paths starting at
the terminal nodes and following the control flow edges in the reverse direction. The analysis
computes the following information:-

Aentry(l) = (Aexit(l) − kill(l))
⋃

gen(l) (2.8)

Aexit(l) =
⋂
li 7→l

Aentry(li) (2.9)

Definition 2.11 A Monotone framework consists of [14], [25], [29], [30],

• A complete lattice L of the framework. The lattice L should satisfy the condition
that each ascending chain a1 v a2 v a3 v ... is finite, i.e., there is an n such that
an = an+1 = an+2 = ...

• A set F of monotone functions f : L → L that contains the identity function id :
L → L; a 7→ a and is closed under composition, i.e., if f , g ∈ F then the composition
f ◦ g ∈ F .

• G = (N, E, n0) is a flow graph

• M : N → F is a function which maps each node in N to a function in F . �

Lemma 2.1 In a lattice L with finite height, every monotone function f : L → L has a
unique least fixed-point denoted f ix(f) defined as :

f ix(f) =
⊔
i≥0

f i(⊥) (2.10)

Proof 2.1 Observe that ⊥v f (⊥) since ⊥ is the least element. Since f is monotone, it follows
that f (⊥) v f 2(⊥) and in general , f i(⊥) v f i+1(⊥) for any i. Thus, we have an increasing
chain:

⊥v f (⊥) v f 2(⊥) v ...

Since L is assumed to have finite height, for some k, we must have that f k(⊥) = f k+1(⊥

), i.e., f k(⊥) is a fixed point for f. Let f ix(f) = f k(⊥). Assume now that x is another fixed-
point. Since ⊥v x it follows that f (⊥) v f (x) = x, since f is monotone, and by induction we

Chapter 2. Background and Related Work 21

get that f ix(f) = f k(⊥) v x. Hence, fix(f) is the unique least fixed point [14]. �

Definition 2.12 The analysis equations corresponding to a monotone framework are

Aentry(`) =
⊔
{Aexit(`

′

) : (`
′

, `) ∈ F } t

c, if ` ∈ E .

⊥, if ` < E .
(2.11)

Aexit(`) = f`(Aentry(`)). (2.12)

�

In general, we can generalize the following equations:-

Aentry(`) =

c, if ` ∈ E .⊔
{Aexit(`

′

) : (`′, `) ∈ F}, otherwise.
(2.13)

Aexit(`) = f`(Aentry(`)) (2.14)

Where, depending on the specific analysis :

• The operator
⊔

is either
⋂

or
⋃

set operators for joining information from the source
nodes.

• A finite control flow graph of the program P, f low(P). f low(P) is either forward or
backward control flow.

• Set of initial labels E , containing the labels of statements of program P of either the
initial nodes or the set of final nodes.

• c specifies the initial value of the analysis at the initial or final nodes in forward or
backward analysis respectively.

• fl is the transfer function for the node l. A transfer function updates the values of the
lattice L on which it is defined.

2.2.4 Dynamic Program Analysis

Our contributions in sensitivity analysis presented in this thesis in Chapter 3, Chapter 5
and Chapter 6 are essentially methods of dynamic analyses. We therefore present here an
essence of dynamic program analysis. Dynamic program analysis refers to the method of
analyzing applications at run-time [31]. The analysis discovers the properties of the program
by examining one or more runs of the program. Typically, the program is instrumented and

Chapter 2. Background and Related Work 22

compiled to an executable and then the instrumented program is executed to perform the
analysis. Dynamic analysis derives properties which hold for one or more executions of the
program. Two essential characteristics that describe the usefulness of dynamic analysis are
[32]:-

• Precision of Information: Since dynamic analysis examines concrete program execu-
tions, the analysis results are precise.

• Dependence on program inputs: The effectiveness and reliability of the analysis
mostly depends on the sufficiency of the test inputs. With dynamic analysis, it is
straight forward to relate changes in program inputs to changes in internal program
behavior and program outputs [32].

The following are the common steps in most dynamic analysis techniques [33]. We now
briefly discuss these steps in the following:-

• Program instrumentation.

• Profile/Trace Generation, and

• Analysis or monitoring.

Program instrumentation

Program instrumentation is the process of inserting additional code in the program for the
purpose of generating program traces or for monitoring. During execution, these additional
codes collect traces of the running program for analysis. Dynamic instrumentation can
also be used for debugging purposes by adding instrumentation checkpoints to the program.
Depending on the platform and program representation, instrumentation can be performed
either at the source, binary or byte code. Example of dynamic binary instrumentation tools
are Intel Pintool [34] and Valgrind [35]. LLVM compiler infrastructure [36] can be used for
both source-to-source code transformation and for an intermediate representation of program
code. ASM [37], JavaAssist [38] and BCEL [39] are tools for byte-code instrumentation.

Profile/Trace Generation

After instrumentation, the program is then executed with a given input set. The execution
generates traces of the program that can be used for analysis.

Chapter 2. Background and Related Work 23

Analysis/Monitoring

The collected program traces are then used for analysis such as debugging and performance
analysis. In case of monitoring, the required properties of the program states are captured for
analysis.

Example 2.5 We illustrate a simple dynamic binary instrumentation using Intel Pintool [34].
Consider a simple analysis tool that counts the number of dynamic load instructions in the
given program. The two basic steps for writing the Pintool are described as follows:-

• Instrumentation: The first step is to locate where to insert the instrumentation code
in the given program binary. Pin API provides functions for inserting code at a specific
location in the binary code. For instance, INS_InsertCall is a function for inserting
code just before or after an instruction. The instrumentation code is called only once
at runtime.

• Analysis function: The analysis function aids the instrumentation during runtime by
executing the code that is inserted by the instrumentation. The analysis function is
called multiple times depending on the running program.

VOID Instruction(INS ins, VOID* v)
{
 // Check if the instruction moves a value from memory to a register
 if (INS_Opcode(ins) == XED_ICLASS_MOV && INS_IsMemoryRead(ins) &&

 INS_OperandIsReg(ins, 0) && INS_OperandIsMemory(ins, 1))
 {
 INS_InsertCall(ins, IPOINT_BEFORE, AFUNPTR(countLoad), IARG_END);

 }
}

VOID countLoad()
{
 counter++;
}

 5fa: push %rbp
 5fb: mov %rsp,%rbp
 5fe: movl $0xa,-0x10(%rbp)
 605: movl $0x14,-0xc(%rbp)

 60c: mov -0x10(%rbp),%edx

 60f: mov -0xc(%rbp),%eax
 612: add %edx,%eax
 614: mov %eax,-0x8(%rbp)

 617: mov -0x8(%rbp),%edx

 61a: mov -0x10(%rbp),%eax
 61d: add %edx,%eax
 61f: mov %eax,-0x4(%rbp)

1
@runtime: on execution of load instruction

2 Insert instrument code

counter++

3

4

5

6

counter++

counter++

counter++

Instrumentation code

Analysis function

Sample program

Figure 2.9: Dynamic binary instrumentation using Pintool

Figure 2.9 shows the workflow of the Intel Pintool. 1 On executing the load instruction
mov -0x10(%rbp),%edx, the tool captures the instruction and checks if it is a load type. If
the instruction is a load type, 2 then the tool inserts the instrumentation code 3 that will
call the analysis routine (countLoad()) at runtime. Similarly, for other load instructions,
the instrumentation code inserts the analysis code in the corresponding locations 4 5

6 . After the program execution, the tool collects the information required for further
analysis. Pintool provides an API function PIN_AddFiniFunction(onExit, 0) to collect
such information. The function onExit is a user defined function to capture information on
program exit. �

Chapter 2. Background and Related Work 24

In the following discussion, we present an overview of speculative execution that provides a
platform for our approximability analysis to be adopted inside modern processors.

2.3 Speculative Execution in modern processors

We now present a brief overview of modern processors, specifically with respect to the
speculative execution scheme, with which we connect the outcome of our approximability
analysis. To increase the flow of instructions into the processor and hide memory latency,
modern processors employ pipelines to improve the average number of instructions executed
per clock cycle. An execution pipeline is divided into stages, which allows multiple instruc-
tions to be overlapped in the pipeline. Consider a simple pipeline architecture consisting of
five stages i.e., Fetch, Decode, Execute, Memory and Write back stage [40]. In the Fetch
stage, the instruction is fetched from the memory. The Decode stage decodes the instruction
to produce the control signals. In the Execute stage, the processor performs the execution.
In the Write stage, the processor performs reads or writes from or to the memory and finally,
in the Write back stage, the processor writes the result to the register file if necessary. Figure
2.10 shows a simple 5-stage pipeline. In this example, each instruction is expected to require
5 cycles in order to complete execution.

DECODE EXECUTE MEMORY WRITEBACKFETCH

2 3 4 51

CPU Cycles

DECODE EXECUTE MEMORY WRITEBACKFETCH

6

Figure 2.10: 5-stage pipeline processor

The performance of a pipeline is significantly affected by hazards, which can prevent a
pipeline stage to complete the execution of an instruction in one clock cycle. The hazards
cause the pipeline to stall. The three general types of pipeline hazards are described in the
following.

• Structural hazards: arise due to hardware resource conflicts.

• Data hazards: occur due to dependency of instructions on the results of the previous
instructions.

• Control hazards: arise due to change in the control of instruction stream.

Chapter 2. Background and Related Work 25

Hazards significantly impact pipeline performance. To avoid potential stalls and hazards,
modern processors employ optimization techniques, an example being that of speculative
execution, which manifests either as data speculation or control speculation as discussed
below. By executing instructions speculatively, the overall performance can be increased
by avoiding pipeline stalls and reducing the waiting time of the processor i.e., without the
need to wait for prior instructions to be resolved before executing the subsequent ones. It is
used pervasively to improve the efficiency of all modern CPUs. Speculative execution can
be implemented using a combination of both hardware and software techniques. We discuss
briefly on control and data speculation in the following.

2.3.1 Control Speculation

In this case, the processor executes control-dependent instructions before resolving the branch
outcome. Control speculation is of two broad types; speculating on the direction of a branch
(taken / not-taken), and speculating on the target of the branch (potentially anywhere in the
program’s address space). Control changing instructions such as branches add difficulty
in the execution of dependent instructions and consequently lead to large performance loss
and energy wastage in pipelined processors. To overcome this problem, modern processors
employ a prediction mechanism to predict the outcome of the branch instructions and based
on the prediction of the predictor, the processor executes instructions speculatively. Control
speculation heavily relies on the branch prediction techniques for predicting the outcomes of
the branches. Branch predictors employ prediction algorithms in an effort to predict whether
a branch will be taken or not taken. Branch predictors play an important role in performance
and energy reduction in modern processors. If the prediction from the predictor is correct, it
improves performance since the processor does not need to wait for the branch to get resolved
and start execution on the predicted path. However, in case of a mis-prediction, the pipeline
has to be flushed and all instructions that enter the pipe due to the mis-prediction have to be
flushed and execution needs to be rolled back to the point where the mis-prediction happens.
This wastes a lot of energy, since the execution of the instructions on the wrongly predicted
path, turn out to be useless.

A number of branch prediction schemes have been explored in literature from simple pre-
diction techniques [41], [42] which provide fast lookup and power efficiency but suffer high
misprediction rate, to complex techniques such as neural based [43] which provide better
accuracy but consume more power and increase the complexity. A branch predictor can
be either static, dynamic or a combination of both. Static branch predictor techniques are
programmer-based or profile-based and rely on the information at compile or at pre-execution
time. For profile-based, the accuracy mostly depends on the representativeness of the profile

Chapter 2. Background and Related Work 26

input set, whereas for programmer-based, the accuracy largely depends on the heuristic of the
programmer. Dynamic branch predictor techniques rely on dynamic information collected
at run-time which adapts to changes in branch behavior and requires additional complex
hardware.

Example 2.6 We now consider an example illustrating control speculation. Figure 2.11
shows a code snippet of an assembly code. Figure 2.12 shows the instructions that enter and
exit the pipeline in all 5-stages. Figure 2.12(a) shows the execution of instructions in the
correct predicted path and hence no flushing or rollback is required. Figure 2.12(b) shows
the execution of the instruction in the incorrect path. On branch resolution, 2 instructions are
required to be flushed from the pipeline. �

1 SUB R1 ,#1
2 CMP R1 , #0
3 BR t a r g
4 MOV R1 , (R3)
5 SUB R2 ,#1
6 t a r g : ADD R3 , R1
7

Figure 2.11: Simple assembly code

1 2 3 4 5 6 7 8 9 10

F D X M W

F D X M W
F D X M W

F D X M W

 SUB R1,#1
 CMP R1, #0
 BR targ
 MOV R2, (R3)
 SUB R2,#1
targ: ADD R3,R1

F D X M W
F D X M W

(a) Correction prediction

1 2 3 4 5 6 7 8 9 10

F D X M W

F D X M W
F D X M W

F D - - -

 SUB R1,#1
 CMP R1, #0
 BR targ
 MOV R2, (R3)
 SUB R2,#1
targ: ADD R3,R1

F - - - -
F D X M W

(b) Recovery due to misprediction

Figure 2.12: Simple machine code executing in a 5-stage pipeline

Branch Prediction

Branch predictor is a component that predicts the target instruction of a branch in advance
before it is resolved. Using branch prediction, the decision of the control flow is made in
the fetch stage. The pipeline executes instructions in the predicted path and after the branch
direction is resolved, in case of a detected mis-prediction, the instructions in the wrongly
predicted path are flushed from the pipeline and the right instructions from the correct path
are fetched. Since branch misprediction incurs high latency for about 14 to 15 cycles as
reported in [44], the performance benefits in using such schemes depend on whether the
prediction is correct and how soon it can check the prediction. Modern branch predictors
have more than 95% accuracy and can reduce branch penalty on mispredictions significantly

Chapter 2. Background and Related Work 27

PC FETCH DECODE EXECUTE WRITEBACK

BP

Branch Resolution

Update branch predictor

Misprediction

Flu
sh

Flu
sh

Flu
sh

MEMORY

Figure 2.13: 5-Stage pipeline with branch predictor

and thus save energy and improve performance. Figure 2.13 shows a 5-stage pipeline with
a Branch Predictor (BP). When a branch instruction is encountered during the fetch stage,
the branch predictor predicts whether the branch is taken or not-taken and the corresponding
instructions from the predicted path are fetched accordingly. When the branch gets resolved
at the execute stage, the prediction is then checked for correctness. If the prediction is wrong,
the pipeline needs to be flushed and required to fetch the instructions from the correct path.
When the branch instruction exits the pipeline, the branch predictor updates its confidence of
the prediction.

2.3.2 Data Speculation

Data dependent instructions require the results of the previous instructions, and hence often
lead to pipeline stalls, waiting for values to be fetched from memory in case of cache misses.
Data speculative execution allows such dependent instructions to execute with predicted
values. The two broad types of data speculation are those that speculate on the address of the
data, and those that speculate on the actual value of the data.

Data speculation typically exploits value locality i.e., predicts the results of instructions based
on previously seen results. Often programs reuse values in the same instructionmultiple times
or reuse in subsequent instructions. The observation that a dynamic instruction may often
produce the same result as in the previous instance is known as value locality [45]. Data
speculation concerns prediction of either the location of data or the value of data. Value
prediction depends on both spatial and temporal locality. The main idea in value prediction
is to predict the results of instructions based on previously seen results. In the pipeline,
the prediction is performed during the Fetch and Decode stages and prediction is verified
before committing the result of an instruction. If a misprediction occurs, the processor has
to re-execute the instruction.

Value Prediction

Data value prediction predicts data values and speculatively uses them in destination instruc-
tions. This increase the Instruction Level Parallelism (ILP) by allowing multiple dependent

Chapter 2. Background and Related Work 28

instructions to be executed in the same clock cycle. However, the predictor needs to predict
accurately, since inaccurate predictions are costly to handle and recover from. Figure 2.14
shows a simple 5-stage pipeline with a value predictor. The value predictor predicts values
during the fetch and decode stages and the predicted value is forwarded to dependent instruc-
tions. Before committing the instruction, it must be verified. If a mis-prediction happens, it
must restart the instruction and execute with the correct values.

PC FETCH DECODE EXECUTE MEMORY

Value
Predictor

WRITEBACK

Verify

If mispredicted

Figure 2.14: 5-Stage pipeline with value predictor.

As explained in Chapter 5, we utilize the speculative execution feature of modern processors
with an objective of improving performance, by not requiring the processor to rollback
in case of mis-prediction. In particular, we work closely with both the value and branch
predictors to relinquish roll-backs when there is a mis-prediction on approximable data or
branch instructions.

2.4 Related Work

In this section, we review some of the key techniques related to our work. We begin with
a literature survey on approximate computing. We first introduce software approaches to
approximation and then present techniques that use both software and hardware approaches.

2.4.1 Software Techniques for Approximate Computing

At the algorithm and programming language level of the computing stack, various approxi-
mation techniques in software exist in literature. These techniques can be broadly classified
into two categories; viz. manual-guided approximation and automated approximation. The
manual-guided approximation requires programmer interventions and efforts, whereas auto-
mated approximation requires minimal programmer interventions and efforts. In the follow-
ing subsection, we discuss in brief, the various software techniques that are of relevance to
this thesis, consisting of both manual and automated approximation.

Chapter 2. Background and Related Work 29

Manual-guided Approximation

Manual-guided approximation techniques require the programmer to annotate parts of the
program that are amenable for approximation. The following discussion presents some of
the common manual-guided techniques and frameworks.

Task Skipping [46]: This technique handles errors or faults in the program at runtime by
continuing execution of the remaining computations even if there are faults being encountered.
Task skipping enables computations to survive errors and faults while providing a bound on
the resulting output distortion. The technique first partitions the computations into tasks.
The execution framework on encountering an error or a fault, simply discards the task
and completes the computation by executing the remaining tasks. To guarantee the limit of

Code

Computation

Task-0 Task-1 Task-N

Meta Language

Task-0 Task-1 Task-N

Execution

 Environment

Error/Fault?

Discard

Task

Accuracy

requirement

Figure 2.15: Task skipping high level overview

distortion of the output, the technique offers a probabilistic distortionmodel that characterizes
the distortion of the output as a function of the failure rates in the computation and hence
provides a probabilistic bound on the distortion. The user can then evaluate this bound, to
ascertain whether the output satisfies the accuracy requirements.

Figure 2.15 shows a high-level overview of the task skipping technique. First, given any
standard programming language such as C or Java, the programmer uses a Metalanguage (for
example, the Jade metalanguage [47]) to partition the computation into tasks (Task − 0 to
Task − N as in the figure). In the second step, when a task encounters an error (hardware or
software fault or both) at runtime, the execution environment simply discards the task, and
picks the remaining tasks to complete the computation. Following are the basic steps of this
approach.

• Task decomposition: The programmer uses the meta-language to identify and mark
task blocks in a program that can be skipped.

• Critical Testing: The execution platform is configured to randomly fail executions of
selected task blocks at target failure rates and observe the resulting output distortion.
If the failures produce unacceptable distortion, it marks the task block as critical, else
marks as fault tolerant.

Chapter 2. Background and Related Work 30

• Distortion model: Randomly selects a fault tolerant task and runs repeated trials,
executes the computation, and then records both the observed task failure rates and the
resulting output distortion.

• Timing model: The execution time of the program for each trial is recorded and then
it uses regression techniques to obtain a model that estimates the execution time as a
function of the task failure rates.

The difference in our work is that we focus on studying the effect of approximate data
storage in a computation instead of studying the effect of approximations in tasks. Therefore,
our work may be seen to target approximation in more elementary parts of a computation,
namely data, as against targeting approximation in a task, which may constitute both data and
instructions together. The authors in [48] conclude that tasks which involve data move and
store are generally critical, that is, not fault tolerant. This is because data errors propagate
in the following computation and accumulate to produce unacceptable results. We find that
within a program, even certain data can be categorised as fault tolerant and therefore, faults
in even move and store on these approximable data can be tolerated. Therefore, our work
in this thesis can further supplement the task-approximation proposed in [48], by going a
step further and categorize certain tasks as fault tolerant, that involves stores or moves on
approximable data only.

Manual Annotation of Programs using EnerJ [48]: This technique supports the Java pro-
gramming language constructs for approximate computing. The EnerJ framework provides
type qualifiers to isolate parts of the program that must be precise from those that can be
approximated. They employ static analysis techniques to statically guarantee isolation of
the precise program component from the approximate one. Using these type qualifiers, the
compiler automatically maps approximate types to approximate storage or computing com-
ponents. EnerJ is implemented as an extension to Java by adding additional annotations to
incorporate the appropriate annotations.

• Type annotations: An approximate program has both approximate and precise types.
Using Ener J, a programmer can annotate approximate and precise variables with the
@Approx and @Precise constructs respectively. The precise types are by default.
The assignment from approximate-typed value into a precise-typed variable is illegal,
however, an assignment from precise to approximate is allowed. Figure 2.16 shows
some example assignments.

For assigning of an approximate type to a precise one, a static function called endorse
allows the programmer to use approximate data as if it were precise. For instance, if
an application consists of a resilient image manipulation phase followed by a critical

Chapter 2. Background and Related Work 31

1 @Approx i n t x = . . . ;
2 i n t y ;
3 y=x ; / / I l l e g a l a s s ignmen t , from approx ima te − t yped va l u e t o

p r e c i s e v a r i a b l e .
4 y = . . . ;
5 x=y ; / / Lega l a s s ignmen t , from p r e c i s e − t yped va l u e t o

app rox ima t e v a r i a b l e
6

Figure 2.16: Ener J assignment statements.

checksum over the result, an endorse function is useful. Figure 2.17 shows one such
example.

1 @Approx i n t x = . . . ;
2 i n t y ; / / p r e c i s e by d e f a u l t
3 y= endo r s e (x) ; / / l e g a l
4

Figure 2.17: EnerJ endorse function usage example

• Approximate operations: Approximate computation is achieved by overloading oper-
ators and methods based on the type qualifiers, e.g. the + operator on integers; the +
operation on two approximate operands producing an approximate integer. However,
the + operation applied on two precise operands will produce a precise integer.

• Control flow: The framework disallows implicit flows that occur via control flow. The
following example violates the desired isolation property. The EnerJ language prohibits

1 @Approx i n t x = . . . ;
2 boo l ean f l a g ; / / p r e c i s e
3 i f (x==5) { f l a g = t r u e ; } e l s e { f l a g = f a l s e ; }
4

Figure 2.18: EnerJ example in conditions that affect control flow

approximate values in conditions that affect control flow. However, the static function
endorse() enables a programmer to allow approximate values in control flow if needed.
Figure 2.18 shows one such violation in conditions that affect the control flow.

• Execution model: The framework leverages both approximate storage and approximate
operations. The hardware model offers approximate storage in the form of unreliable
registers, data caches, and main memory. Approximate ALU operations are specified
using appropriate approximate instructions. The approximate instructions give hints to

Chapter 2. Background and Related Work 32

the architecture that it may apply various energy-saving approximations when executing
the given instruction.

• Layout of approximate data: The hardware model supports approximate memory data
at a cache line granularity by having a bit per line in each page that specifies whether the
corresponding line is approximate. A runtime system is used to segregate approximate
and precise elements in different cache lines. A simple technique has been proposed
for laying out of objects with both approximate and precise fields. The precise portion
of the object is contiguously laid out first. Then, just after the end of the precise line,
the approximate fields are laid out.

In this thesis, we propose methods that automatically identify program data that are ap-
proximable, unlike in EnerJ where a programmer has to explicitly annotate approximable
data with type qualifiers. Thus, our work can enhance EnerJ like paradigm by reducing the
responsibility of programmers.

Automated Approximation

Manually determining and classifying parts of a program that are amenable for approximation
is a daunting and error-prone task. At the same time, it requires programmer efforts and
domain expertise. Automated techniques emerged in order to ease approximate computing
practitioners in applying approximate computing techniques at the language level. In this
section, we discuss various automated techniques for classifying and determining parts of a
program amenable for approximation.

Automatic Sensitivity Analysis for Approximate Computing (ASAC): This technique
[49] aims to automatically discover approximable program data using statistical methods.
The main idea is to systematically perturb variables and then observe the resultant output
sensitivity. It consists of 3 main stages, namely discovery, probe and testing.

• Discovery : During the discovery stage, the framework extracts the variables of a
program along with a range of values that each can expect during execution. Using
range analysis, for each variable Vi, the range of Vi is given by range(Vi)=[Ri1, Ri2],
where Ri1 ≤ value(Vi) ≤ Ri2. If the range analysis cannot determine the range of
values, range(Vi) is given by the data type of Vi. To calculate the value ranges of
variables, the range analysis employs widening and narrowing operator based on data-
flow analysis [50]. The Cartesian product of the variable range intervals is given by
H = [R11, R12] × [R21, R22] × ... × [Rn1, Rn2], where [Ri1, Ri2] is the range of variable
(Vi). This Cartesian product forms an n-dimensional hyperbox. Each dimension of the
hyperbox represents a variable and the corresponding edge is the range of the variable.

Chapter 2. Background and Related Work 33

The number of dimensions in the hyperbox is determined by the number of variables
in the program.

• Probe: The hyper-box constructed in the discovery stage represents the sample space for
the statistical experiments. The hyper-box is divided into smaller hyperboxes of equal
sizes. These small hyperboxes are obtained by discretization of edges and selecting
only a subset from among them. A subset of these smaller hyperboxes is selected
as samples using the Latin Hyperbox Sampling (LHS) algorithm [51]. From each
sampled hyperbox, m points are chosen uniformly at random. Each point is a n-tuple
coordinate containing the values of each variable at that point, where n is the number of
variables in the program. During the execution of the program, these points are passed
to the program and the values are perturbed forcefully to corresponding variables using
a dynamic instrumentation tool. A program execution with this perturbation is called
a probe run. Due to the perturbation, the program output can be expected to deviate
from the correct output. Based on the difference between the QoS threshold of the
application and the perturbed outputs, each such sample is marked as "good" (pass)
or "bad" (fail). Consider Pi is a vector of all outputs of all the probe runs of sample
Si, fobj is an objective function, and θ is a constant threshold. We test if fobj(Pi) ≥ θ

and if so, it designates Pi to be a "good" sample, else marks it as a "bad" sample. The
objective function is defined as fobj = (

∑ j=k
j=0 w(Pi))/k where w(Pi) = 1 if Pi ≥ Tqos,

otherwise w(Pi) = 0. Tqos is the user-defined QoS threshold for the application.

• Testing: For each dimension of the hyperbox, a cumulative distribution curve for good
and bad samples is constructed by plotting the number of good and bad samples against
the range of values of that dimension. The distance between the two curves denotes
the contribution of the variable towards the program output. The maximum distance
between the two curves is calculated using the Kalmogorov-Smirnov hypothesis test
[52]. This distance is called the d-statistics, and it translates to the sensitivity ranking.
The larger is the distance, the higher is the sensitivity of the output to the variable of
that dimension and vis-versa.

Figure 2.19 shows a high-level overview of the ASAC framework. The program under
analysis consists of 3 variables i, a, and sum. 1 The analysis constructs a hypercube where
the dimension of the hypercube is the range of values that the variable can take at runtime.
2 The variable’s ranges are fine-tuned using range analysis. 3 The analysis then picks a

point from the hypercube, for instance, the analysis picks sum = 3.0, a = 0.2 and i = 4 for
perturbation. The application executes and 4 measures the QoS loss with respect to the

acceptable QoS. 5 Using the results from the perturbation runs, the cumulative distribution

curve is constructed and 6 hypothesis testing is performed to infer the sensitivity of the

Chapter 2. Background and Related Work 34

int sum(){
 int i;
 double a = 0.1, sum = 0.0;
 for(i=0;i<10;i++){
 sum += a/10;
 }
return sum;
} i

su
m

a

Hypercube construction

Fine tune value range using range analysis

sum 3.0
a 0.2
i 4

Perturbations

Perturbed output Acceptable QoS

QoS Loss

sum
i
a

Sensitivity Ranking

Ranking

1

2

3

4

5
6

7

Hypothesis testCumulative curve
construction

Source code

Figure 2.19: Overview of ASAC: Automatic Sensitivity Analysis for Approximate Comput-
ing Framework [49]

variables. 7 Finally, the sensitivity ranking of variables is performed.

In comparisonwithmanual annotations byEnerJ [48], this technique of automated inferencing
of approximable program data shows 86% accuracy in identifying approximable variables.
In terms of scalability, the analysis is able to analyze large applications such as JPEG and
H.264. The contributions of this thesis are most similar to ASAC which also proposes a
method for automatic sensitivity analysis of program data using statistical methods. The
sensitivity results reported, however, have no reliability guarantee. In addition, the number of
program executions in the presence of perturbations required for performing the statistical test
is chosen in an ad-hoc manner. The number of samples chosen influences the reliability and
efficiency of the results. The proposed methods in this thesis not only provide probabilistic
guarantees on the sensitivity classification but also require an optimal number of program
executions for a desired confidence level of the analysis. Moreover, a hybrid static-dynamic
sensitivity analysis is also proposed with an improvement in the efficiency.

Automatically Identifying Critical Input Regions and Code [53]: This technique pro-
poses a system called Snap. Snap automatically identifies critical input regions and code
in applications. It automatically groups related input bytes into fields. For each field and
the corresponding regions of code that access data derived from that field, Snap classifies
the field as either critical or f orgiving. Snap instruments the application executions to
generate trace information. The execution trace consists of the sequence of executed branch

Chapter 2. Background and Related Work 35

instructions, the influence trace records for each executed instruction, the input bytes that
influence the operands of the instruction. Snap performs the following steps:

• Baseline execution : To record the baseline execution and influence traces, Snap
executes an instrumented version of the application on a set of representative inputs.
These traces are considered the normal behavior of the application.

• Input Specification Generator : Using the baseline influence traces, Snap groups
adjacent input bytes into fields. Consider two adjacent input bytes i and j. Let Ei be the
number of executed instructions whose operands are influenced by i but not influenced
by j and E j similarly be the ones influenced by j but not influenced by i. Let Ei j

be the number of executed instructions whose operands are influenced by both i and
j. The Affinity Ai j of i and j is defined as Ai j =

Ei j

Ei+Ej+Ei j
. If Ai j ≥ 0.75, the input

specification generator groups i and j into the same field. The effective threshold value
0.75 is determined empirically and found robust in practice.

• Instrumented Executions on Fuzzed Inputs: Given an input and a grouping of the bytes
into fields, a suite of fuzzed inputs is produced by fuzzing each field input in turn. Each
fuzzed input is the same as the original input, with the exception for the value in the
fuzzed input field, which is set to an extreme value (all 0s or all 1s). The application
runs on each fuzzed input to produce a suite of fuzzed execution traces, one for each
fuzzed input.

• Field Classification : Using the baseline execution traces, the baseline influence traces,
and the fuzzed execution traces, Snap uses hierarchical agglomerative clustering to
classify each input field as either critical or forgiving. First, it uses the behavioral
distance described below to check if the value of the field substantially influences the
set of basic blocks that the application executes. Secondly, if the field is not classified
as critical, it uses the output influence to determine if the field influences one or more
operands of a substantial proportion of the executed instructions. If so, it classifies the
field as critical or output critical. Otherwise, it classifies the field as forgiving.

The Behavioral distance measures the similarity between the baseline execution and
the execution on a fuzzed input of an application. The distance is a number in [0,1],
0 implies that the executions had identical behavior and 1 implies no behaviors in
common. The behavioral distance is given by Di j =

|Bi4Bj |

|Bi∪Bj |
which is the normalized

Hamming distance between the two sets of the executed basic blocks, where Bi is the
set of basic blocks for a baseline execution. B j is the set of basic blocks for execution on
a fuzzed input. Using this information in combination with hierarchical agglomerative
clustering [54], it classifies the input fields into critical and forgiving. The Output
Influence : is computed by inspecting the influence trace of the baseline execution. It

Chapter 2. Background and Related Work 36

captures the influence of the input field on the quality of the output. It is calculated as
the proportion of the executed instructions that have at least one operand whose value
in the field influences. For a threshold 0.1 (10%), if the output influence exceeds the
threshold, the input field is classified as critical.

• Code classification: Snap uses hierarchical agglomerative clustering [54] for classi-
fication of the executed basic blocks. Using the input fields for classifications and
the baseline influence traces for all representative inputs from the previous steps, it
classifies each basic block as critical or forgiving. A basic block is classified as critical
if the operands of its instructions are derived primarily from critical input fields. On
the other hand, if the operands of the instructions are primarily derived from forgiving
inputs fields, a basic block is classified as forgiving.

As shown with experimental results on three benchmark applications i.e, GIF, PNG and
JPEG, Snap makes classification with significant precision and recall.

The methods in this thesis are different from Snap because the focus here is to detect
approximable data, that is not an input to the application of interest. Also, unlike Snap that
marks code blocks as critical or approximable, the methods in this thesis do not analyze code
regions for their approximability.

Application Resilience Characterization [55]: This technique proposes a framework
calledARC : Application Resilience Characterization [55]. ARC partitions a given application
into approximable and sensitive parts. Additionally, the framework characterizes potential
approximable parts to evaluate the applicability of various approximate computing techniques.
The framework consists of two major steps :

• Potential resilient (approximate) computation identification: As the first step, the
instructions in a given program are partitioned into computation kernels. The method
considers the innermost loops as atomic kernels. During program execution, random
errors are injected in the program variables that are modified in a kernel and used
in the kernel outputs. If the application crashes or hangs, or produces an output not
within the user Quality of Service, the kernel is marked as sensitive, else marked as
approximable.

• Resilient computation characterization through approximation models: The resilient
kernels obtained from the previous step are then characterized for resiliency. The
strategy for error injection is similar to the previous step with two key differences. First,
the errors injected in the kernels are derived from approximation models that model the
effects of various approximate computing techniques. The approximation models and

Chapter 2. Background and Related Work 37

techniques used for characterizations are Arithmetic operations, data representation,
and approximations carried out at the algorithm level.

Experimental results on 12 recognition, mining and search applications show an average
83% of the application’s run-time is spent in resilient kernels, out of which, 74% of the
run-time is dominated by a single kernel called the dominant kernel. Therefore, the majority
of resilience can be exploited by focusing on approximate computing design efforts on the
dominant kernel.

Our focus in this thesis is different in the sense that we propose methods for identifying
resilient data and resilient load and branch instructions only and not for identifying resilient
code fragments or kernels.

Loop perforation [56]: The simplest form of automated approximation proposed in literature
is Loop perforation. Loop perforation transforms loops to execute a subset of their iterations,
with the intention of trading accuracy for performance.

Loop perforationCode

Perforation rate (Pr)
Acceptability Metric

Loop Perforated

Binary

Training input

Application profiling

(Loop Identification

& Selection)

Strategy

Figure 2.20: Overview of loop perforation transformation framework

Figure 2.20 shows a high level overview of a loop perforation transformation. The prepro-
cessing phase is required to identify and select loops to perforate. The loop perforation
step takes as input a loop, a percentage of iterations to skip during the execution of the
loop, a perforation strategy, an acceptability metric, and training input. The percentage of
non-executed iterations is called the perforation rate (pr). The output is a loop perforated
binary. The transformation generates a new variant of computations that produce approx-
imate results. The performance / accuracy trade-off can be controlled by the perforation
rate (pr). For example, a perforation rate pr = 0.5, means the iterations are skipped by
half. The proposed implementation supports both static and dynamic loop perforation. The
static loop perforation integrated with the compiler supports a range of perforations including
modulo perforation (which skips every nth iteration), truncation perforation (skips initial
or final block of iterations), interleaving perforation (transforms the loop to perform every
n-th iteration) and random perforation (which skips randomly selected iterations at a mean
given rate) Note that, static loop perforation does not require training input. Dynamic loop

Chapter 2. Background and Related Work 38

perforation perforates loops at runtime. It allows loop perforations to be turned on and off at
runtime.

This work is orthogonal to ours given that our contribution is the sensitivity analysis of data
and load/branch instructions. However, our analysis can help in the identification of loops that
can be perforated in certain cases. For example, if a loop contains operations that modify only
approximable data, then we can characterise the loop to be perforable. The above discussed
work on loop perforation can deal with general loops as well.

In the following discussion, we mention about approximation techniques at the system im-
plementation level that are used inside modern processors. The approximability analysis
techniques that we have discussed earlier, either transform the program to an approximate
variant, or mark approximable elements and leave it to the runtime to take appropriate actions.
In addition, a number of schemes exist in literature that allow computations with approximate
values. We mention some of these below.

Chapter 2. Background and Related Work 39

2.4.2 Hardware and Software Techniques for Approximate Computing

In this section, we present in brief various hardware and software techniques that are of
relevance to this thesis.

Load Value Approximation [57], [58]:

This work is based on the idea of load value prediction [45]. This approach minimizes
execution rollback by allowing approximations. In traditional load value predictors [45],
[59], [60], on a L1 cache miss, the predictor generates a value and allows the processor to
execute speculatively. This allows the processor to proceed without waiting for the data to
be fetched from the next level memory hierarchy. Concurrently, the load request is initiated
for fetching the data from the next level of memory for validation. On arrival of the data, the
prediction is validated against the actual value. If the prediction is wrong, the processor must
rollback and restart executing the load instruction with the actual value. When the prediction
is correct, the predictor increases its confidence for that value. If incorrect, the predictor
decreases its confidence for that value. The main challenge for load value prediction is that
small differences between the predicted and actual values may lead to execution rollback and
hence degrade performance. In the case of floating point values, the prediction performs
poorly since small variations in floating precision leads to costly rollbacks [60]. Load value
approximation allows small deviations and hence often helps in reducing execution rollbacks.

Processor

L1 Data Cache

Load Value
Approximator

Main Memory

1 Load Miss

Generate approx. value2

Continue with approx. value3a

Train4

3b Get actual value

Figure 2.21: Load value approximation block diagram

Figure 2.21 shows an overview of load value approximation. When a load miss occurs in the
L1 cache 1 , the load value approximator generates approximate values 2 . The processor

Chapter 2. Background and Related Work 40

proceeds with its execution with the approximated value 3a and concurrently sends the

request to the next level of the memory hierarchy to fetch the actual data 3b . The actual

data is then used to train the approximator for better accuracy 4 . In conventional caches,
a miss always fetches the data from the next level in the memory hierarchy. However, for
load value approximation, fetching the data is optional. Fetching the data improves predictor
accuracy. On the other hand, by choosing not to fetch the data, the technique can trade-
off prediction accuracy for energy savings in the memory hierarchy. Also, with traditional
predictors, the speculated value must be validated against the actual value. If the two are
not identical, the speculative execution is rolled back and the load instruction is repeated.
However, in load value approximation, the rollbacks are not required since it does not need
to validate the correctness of its approximations. Load value approximation relies on the
programmer to mark the approximable loads. The technique leverages on prior work by
annotating data [48] and proposes an ISA extension to indicate which loads to approximate.
On a range of PARSEC workloads, this technique observes an average speedup of up to 8.5%
and energy savings of up to 12.6%.

A similar technique for GPUs is proposed in [58]. This technique proposes an approximation
technique called Rollback-Free Value Prediction (RFVP). The main motivation is to predict
the values of safe to approximate loads that miss in the cache, without checking for mispredic-
tion or recovery. In doing so, RFVP avoids high-cost pipeline flushes, long memory latency
and at the same time is able to avoid re-executions. The technique introduces a knob called
drop ratewhich is a predetermined fraction of the cache misses for which it is allowed to drop
memory requests after predicting their values. The drop rate becomes a knob for performance
and quality trade-off. By dropping the memory requests, the pressure on memory bandwidth
is reduced and at the same time, the memory and cache contention is reduced. Based on the
observation that in GPUs, simultaneous memory accesses require high off-chip bandwidth
[61], [62], this technique applies RFVP in GPU processors to mitigate both latency and
bandwidth problems. In order to inform the approximability information to the architecture,
two new instructions are introduced, namely (1) an approximate load instruction and (2) an
instruction for setting the drop rate. For an approximate load instruction, a bit in the opcode
is set, hence permitting the micro-architecture to use RFVP. For drop rate to be visible to
the micro-architecture, the ISA is extended with an instruction that sets the value of a special
register to the desired drop rate.

In modern GPUs, each streaming multiprocessor (SM) contains several stream processors
(SP). Each SM has its own L1 cache. The proposed technique augments each SM with an
RFVP predictor. The RFVP predictor is only triggered when L1 data cache misses. In GPU

Chapter 2. Background and Related Work 41

L1 Data Cache

L2 Cache

Main Memory

Streaming Multiprocessor

Load Request

RFVP
Predictor

WarpID/PC

Load Type

Cache miss

Prediction

Drop Signal

1

2

3a

3b

4

5
6 Memory request

Figure 2.22: RFVP in GPU micro-architecture

SIMD 2, each SIMD load instruction accesses multiple data elements for multiple parallel
threads. Figure 2.22 shows RFVP integrated in the GPU micro-architecture. In the GPU
architecture, multiple threads share the same code. A group of threads sharing the same code
is called a warp. In the figure, the SM accesses the RFVP using the WarpID and the Program
Counter (PC). A load value is predicted only if its {WarpID, PC} matches the row tag in the
predictor table. The predictor is of 192 entries, 4-way set associative, and consists of two
delta predictors [63] and two last-value predictors [64]. On an approximable load miss in
the L1 data cache, if the predictor drops the request, the RFVP predicts the entire cache line
and supplies the requested words back to the SM, and also inserts the predicted line into the
L1 data cache. The entire predicted lines present in the L1 data cache may be written to the
memory, in this case, it might overwrite the precise content. Hence, it is required that any
data accessed by a precise load must not share a cache line with the data accessed by the
approximate loads. The technique relies on the compiler to allocate objects in the memory
at cache line granularity and ensures that approximate data do not share a cache line with
precise data.

Load value approximation relies on heuristic and programmers to annotate codes or instruc-
tions that are safe to approximate. Our proposed methods in this thesis focus on automated
identification of safe to approximate loads/branches and requires little programmer interven-
tion. Load value approximation and RFVP exploit load value approximation and perform an
execution rollback if the QoS is beyond the acceptable limits. Our approach is different in the
sense that safe to approximate loads identified by our analysis are guaranteed to produce an

2Single Instruction Multiple Data

Chapter 2. Background and Related Work 42

output within acceptable limits with a user specified confidence even with load value mispre-
diction. Also, we extend to exploit approximation in branch instructions by identifying safe
to approximate branches and propose a rollback-free pipelined execution of such branches in
the event of branch misprediction.

Approximate Loads in Chip Multiprocessors [65]:

This technique proposes to approximate coherence related load misses by returning stale
values to the processors. The motivation of this work is based on the fact that invalidated
lines in the MOESI 3 cache coherence protocol remains in the same state (not changed)
for a long time despite being invalid. This allows the load miss to read those invalid lines
and proceed with the execution speculatively [66]. Concurrently, the line is fetched from
the memory hierarchy. On arrival of the valid lines, the validity is tested, if the lines did
not match, the computation is rolled back and the load instruction is re-executed. However,
invalidated lines often get evicted fairly early soon due to the cache replacement policy. To
overcome this problem, they propose a Small Victim Cache (SVC) attached close to the L1
data cache to hold such invalidated lines. On a load miss, if the line is not present in the L1
cache, it is then looked up in the SVC. If it is present, it is used, otherwise, it performs the
normal request to the next level memory hierarchy. With this approach, the coherence load
misses could get serviced by a stale line from either the L1 Data cache or the SVC. However,
such lines stay for too long in the SVC, leading to the computation getting more stale over
time impacting application accuracy. To control the staleness of such lines in the SVC, they
propose a time-bound called SVC + TB which sets a time threshold to limit the staleness of
such lines residing in the SVC. With SVC + TB, the approach shows up to 10-15% speedup
on PARSEC 2.0 workload.

In contrast to the work above, we propose techniques that connect statistical methods for
approximability analysis to speculative execution in modern processors. Our approximability
promise is based more firmly with the confidence of the trials that we run with the associated
confidence measures. The central theme in all our chapters, as opposed to the ones in
literature, is a statistical analysis technique for identifying approximable data or instructions.
This gives us an unique advantage over other methods existing in literature. Our contributions
for identifying approximable data and instructions automatically, as outlined in the following
chapters, entail this additional guarantee. We therefore, believe that the approximability
techniques proposed in this thesis have a distinct novelty over others. In the following
chapters, we outline our contributions in detail.

3Modified Owned Exclusive Shared Invalid

43

Chapter 3

Automated Sensitivity Analysis of
Program Data Using Dynamic Analysis1

Approximable programs generally consist of both approximable and non-approximable in-
structions and data elements. Identification of approximable code or data portions is an
important step for approximate computing techniques. Approximation support at the al-
gorithm or language level is desirable to allow a programmer explicitly mark the parts of
program code or data that deem fit to be approximable. This chapter presents an automated
dynamic analysis framework based on statistical hypothesis testing to automatically classify
approximable program data versus the non-approximable ones with a probabilistic reliability
guarantee. We present experimental results to compare our automated data classification
with reported manual annotations on popular benchmarks used in approximate computing
literature. We then discuss and show that our method achieves promising reliability results
compared to manual annotations.

3.1 Introduction

Approximation aware programming languages have been proposed in programming lan-
guages research, where programmers can annotate data with type qualifiers (e.g. precise

1The contents of this chapter have been published at B. Nongpoh, R. Ray, S. Dutta, and A. Banerjee,
“Autosense: A framework for automated sensitivity analysis of program data”, IEEE Trans. Software Eng.,
vol. 43, no. 12, pp. 1110–1124, 2017. doi: 10.1109/TSE.2017.2654251. [Online]. Available: https:
//doi.org/10.1109/TSE.2017.2654251.

https://doi.org/10.1109/TSE.2017.2654251
https://doi.org/10.1109/TSE.2017.2654251
https://doi.org/10.1109/TSE.2017.2654251

Chapter 3. Automated Sensitivity Analysis of Program Data Using Dynamic Analysis 44

(non-approximable) and approx (approximable)) to denote their reliability. However, pro-
grammers need to judiciously annotate so that the accuracy loss remains within acceptable
limits. This can be non-trivial for large applications where error resilient (approximable)
and non-resilient (non-approximable) program data may not be easily identifiable. Incor-
rect annotation of even one data element as error resilient / approximable may result in an
unacceptable output. A standing challenge in approximate computing across the computing
stack is to identify the error resilient components, that can in turn be realized and mapped
onto the approximate hardware. At the application level, identifying program data which
are error resilient against critical ones is a daunting challenge, since incorrect identification
of critical data as error resilient can be catastrophic in terms of the output quality of the
application. This has inspired a number of recent research articles in this direction [48],
[53], [55], [68], [69]. However, existing work propose programming language frameworks
for manual annotations of approximable data [48], identification of critical code segments
[53], [55] or propose automated analysis of data resiliency without any quantitative reliability
guarantee [69].

Our main motivation is to develop techniques that can automatically classify program data as
either approximable or non-approximable with reliability guarantees. This chapter presents
a dynamic analysis framework, a collection of systematic methods for program data classifi-
cation with quantitative confidence guarantees. The contributions are as follows:

• We present a statistical method to classify program data as error resilient or critical
based on dynamic analysis. Our method comes with a probabilistic guarantee derived
from statistical tests.

• We present experimental results on benchmarks popularly used in approximate com-
puting research to illustrate the proposed method.

Our framework can guide application designers to use programming language constructs
like the one reported in [70] to effectively annotate resilient data components to gain energy
efficiency without having any prior knowledge of the application domain. Moreover, the
proposed technique can be tuned with a probabilistic confidence parameter and an acceptable
QoS band, depending on designer requirements, to perform partitioning accordingly.

Our proposed technique has been evaluated on the Scimark benchmark [71] and three ap-
plications from the AxBench benchmark [72]. In all the evaluated applications, manual
classification of error resilient data has been reported in earlier work [70]. We show that
introducing approximations in all the manually classified error resilient data results in failed
QoS requirement for 62.5% of the applications, for a large number of executions. On the
other hand, 25% of the applications failed the same QoS requirement when approximation

Chapter 3. Automated Sensitivity Analysis of Program Data Using Dynamic Analysis 45

is introduced using our proposed method for identifying error resilient data, for the same
number of executions.

3.2 Problem Overview

Before we introduce the problem formally, we reiterate on the approximate computing
paradigm in the context of this work. Figure 3.1 shows a high-level overview of the ap-
proximate computing technique.

P

P’

I
Approximate computing

techniques

Transformed

QoS Metric

QoS Metric

O

O’

|s-s’| <

s

s’

Figure 3.1: General approximate computing technique task

Consider a program P, an input I, the program P computes an output O, i.e., P(I) = O.
Consider a quality of service metric Q which is a real-valued function that will assign a score
to the output of P, i.e., Q(O) = s. The approximate computing task is to apply approximate
computing techniques to transform P to a new program P′ such that ∀I.P(I) = O and
P′(I) = O′ with |Q(O) − Q(O′)| < ε or |s − s′| < ε for some user given ε , where s′ = Q(O′)

[73]. Here |Q(O) − Q(O′)| is the QoS band.

Definition 3.1 An acceptable Quality of Service (QoS) band is a range of real-valued num-
bers [0, ε) from the QoS band, where ε is user-specified. �

Intuitively, techniques that transform the program P or its execution will most likely alter the
output as compared to the output of the original program P. The user is expected to provide
a quantitative measure on how much change in the output from the original is acceptable.
After the transformation of a program P to P′, the transformed P′ is expected to produce an
output close to the output produced by P, given the same inputs. The transformed program
P′ is expected to be more efficient in terms of time, space, energy, or some measure of
performance [73]. It may be noted that not all programs are amenable to approximation.
Applications such as mission-critical and real-time control are examples of applications that
cannot be approximate. For certain applications, it may not be easy to define the QoS metric.
For instance, for an application that processes images, we may use pixel-wise root mean

Chapter 3. Automated Sensitivity Analysis of Program Data Using Dynamic Analysis 46

square error as the metric. Also, it may not be possible to guarantee that the output of the
transformed program will always be within the QoS band for all inputs. There may be corner
case inputs that may violate the acceptable quality of service band [73]. The Quality of
service metric is used to specify an application’s constraints on approximation. The ideal
case will be for the system to guarantee that a program’s output will always be within the
acceptable QoS band. In reality, it is impossible for systems to prove arbitrary quality bounds
with perfect certainty. However, a realistic system can guarantee that the program’s output
will be within the acceptable QoS band with high probability. [74].

Sensitivity analysis has been applied to mathematical models of systems to understand a
relation between the uncertainty in the system’s output and the uncertainty in the input to the
system. Questions like which are the system inputs that play a critical role in determining the
variance of the system output can be answered with sensitivity analysis techniques [75]. Our
focus here is to analyze the sensitivity of a program’s output to its internal data rather than its
input. In the following discussion, we use the terms insensitive and approximable, sensitive
and non-approximable interchangeably.

Formally, let I and R denote the set of program input and output data respectively. Let D
be the program data neither in I nor in R. The objective of sensitivity analysis is to partition
the set D into the set of sensitive data, SD and the set of insensitive data SD = D − SD.

The notion of sensitivity of program data with respect to a user defined Quality of Service
(QoS) is formally defined as follows. Let E be the set of all possible executions of a program
P. Given an execution e ∈ E and a program data v ∈ D, let (ve, `) denote the value of v at
program point ` in P during the execution e. We term this value as the exact value of v at
location ` of P with respect to the execution e. Evidently, there could be multiple locations
and therefore multiple (ve, `) values for the execution e. Let the set of program locations
where v occurs in an execution e be denoted as `e

v . Let (vapprox, `) , (ve, `) denote any value
of v at location `. We term this as a candidate approximate value of v at location ` in P with
respect to the execution e. The definition of sensitivity of v is now defined as:

Definition 3.2 Given an acceptable QoS band for a program P and a sensitivity threshold
probability θ, a program data v ∈ D is called sensitive if and only if ∀e ∈ E , the probability
that the program output R remains in the acceptable QoS band when every instance (ve, l) in
e is replaced with some (vapprox, `), is less than θ. Formally,

SD =
{
v ∈ D | ∀e ∈ E, ∀` ∈ `e

v, (ve, `) → (vapprox, `) =⇒ Pr(R ∈ QoS) < θ
}

(3.1)

where (ve, `) → (vapprox, `) denotes the substitution of (vapprox, `) in place of (ve, `). R ∈ QoS

implies that the program output R is within the QoS band. The set of insensitive data is

Chapter 3. Automated Sensitivity Analysis of Program Data Using Dynamic Analysis 47

1 boo l b i n s e a r c h (i n t lo , i n t h i)
2 {
3 uns i gned i n t s i z e = hi − l o + 1 ;
4 uns i gned i n t mid = (l o + h i) / 2 ;
5 i f (lo > h i) r e t u r n f a l s e ;
6 i f (s i z e >= 1) {
7 i f (a [mid] == key)
8 r e t u r n t r u e ;
9 e l s e i f (a [mid] > key)

10 r e t u r n b i n s e a r c h (lo , mid−1) ;
11 e l s e
12 r e t u r n b i n s e a r c h (mid +1 , h i) ;
13 }
14 r e t u r n f a l s e ;
15 }

Figure 3.2: Binary search procedure

defined as SD = D − SD. �

Example 3.1 To illustrate the notion of sensitivity of program data, we present a simple
example program of a binary search procedure to search for the presence of a key element
in an input array, in Figure 3.2. The program has a data set D = {lo, hi, size,mid}, input
data set I = {a} and output data set R = {ret}, where ret denotes the return value of the
procedure. We consider a strict QoS here, which states that the output is acceptable only
when it produces the accurate output, i.e., the procedure should return a true when the search
key is present in the input array and f alse otherwise. It may be observed from the example
that the data size does not affect the output, the return value of the program. For any inexact
value that size may take other than 0, the binary search procedure will return an acceptable
output. Therefore, we may conclude that size is likely to be not sensitive to the output. Notice
that the data size is not dead2 with respect to the program output as there exists a valuation
in the data range of size, the value 0, such that when size takes 0 as an inexact value, the
program output may not produce an acceptable QoS. On the other hand, the data elements lo,
hi and mid are likely to be sensitive to the program output since they are used in computing
the indices of the input array a within which to search for the key. Observe that in line 4,
mid depends on the data lo and hi and in line 8, mid is used as an array index. Therefore, an
inexact value in any of lo, hi or mid may result in the array index mid in line 8 to be outside
the allocated memory for array a. This may cause memory errors / unacceptable outputs. It
is to be observed that for a multi-line code with a complex control and data flow, it is hard to
classify sensitive and insensitive data by manual inspection. �

The notion of acceptableQoS depends on the application under consideration. As an example,

2A dead variable is one whose value has no effect on the program output and is eliminated by the compiler

Chapter 3. Automated Sensitivity Analysis of Program Data Using Dynamic Analysis 48

the QoS of an image rendering application can be measured by the PSNR (Peak Signal to
Noise Ratio) of the image. The output image of the application is deemed acceptable, given
that the PSNR is less than a predefined acceptable threshold. An acceptable QoS band is
user defined and it specifies the degree of precision desirable or in other words, how much
approximation is acceptable to an user. In the experiments section, we define the QoSmetrics
considered for the benchmark applications.

Automatically identifying approximable data is a daunting task. Quantifying the relationship
between program variables, inputs and outputs is difficult. Also, the test input set needs to
be representative of the entire input-space. In terms of scalability, most applications consist
of hundreds of program variables with different data types. Identifying program variables of
different data types is a challenge and needs to be treated differently. For example, pointer
types need a special analysis such as alias analysis to correctly test for sensitivity. In the
following, we present our proposed methods for identification of approximable data.

3.3 Detailed Methodology

In this section, we present our dynamic sensitivity analysismethod for automatic classification
of sensitive and insensitive program data. The method provides probabilistic guarantees on
the classification, i.e., it identifies application data which are insensitive to the QoS with a
probability at least θ, where θ is user specified. Since our procedure is based on probabilistic
methods, the classification may have errors. However, the probability of making an error can
be bounded in the framework. To test for sensitivity of a data, our idea is to deliberately inject
inexact values in the data and execute the program in the presence of inexactness. Such an
execution of the program is considered as a random experiment. The outcome of the program
is observed to check if it lies within the acceptable QoS band.

As an example, consider an application that renders images. We inject an inexact value in
one of the application data and observe the noise in the final rendered image in the presence
of inexactness to judge if it is to be rejected or accepted. In this way, every fault injected
execution of an application can be interpreted as a Bernoulli trial with two possible outcomes,
a success and a failure. The outcome is a success if the application output remains within the
acceptable QoS band and is a failure otherwise. Example 3.2 provides a concrete example
of our methodology.

Example 3.2 Consider an image processing application, a JPEG encoder for example. Figure
3.3 shows a high level overview of our methodology. Consider a hypothetical code snippet
of an image processing program P. Here, x is the target variable for sensitivity analysis.
An instance of a random experiment is an experiment with an input I, an image in this

Chapter 3. Automated Sensitivity Analysis of Program Data Using Dynamic Analysis 49

Random Experiment Pass

Fail

Target variable : x

Random Experiment

Target variable : x

Random Experiment Pass

Target variable : x

P

P’

I Fault Injection

Transformed

QoS Metric

QoS Metric

O

O’

|s-s’| <

s

s’

Pass/Fail

double x=y+1

x=z+10

z=y+x

double x=random()

z=y+x

Sample

double x=random()

x=random()

z=y+x

Figure 3.3: Experiment methodology of a random experiment using fault injection experi-
ment on an image processing application

example. The experiment injects fault in the variable x by replacing the right hand side of
all assignment statements of x with randomly generated values. For instance, the assignment
statement x = y + 1 is replaced by x = random() and the statement x = z + 10 is replaced by
x = random() in the transformed program. The output of P and P′ is then compared using
the QoS metric to decide whether the experiment is a pass or fail, based on the user defined
ε . This random experiment is considered as a sample in our statistical analysis. We perform
the analysis by running such experiments till we are confident of the sensitivity of a given
target variable. �

Broadly, our framework consists of the following two steps:

• Conducting Bernoulli trials by executing fault injected applications and

• Performing statistical analysis of the outcomes of the Bernoulli trials to identify sensi-
tivity of application data.

We now discuss the fault injection mechanism and the statistical methods used in our work
in the following sections.

Chapter 3. Automated Sensitivity Analysis of Program Data Using Dynamic Analysis 50

3.3.1 Fault Injection Model

An important step in our method is fault injection, whereby we inject faults in an application
execution. The purpose is to emulate an approximate computation and observe its effect on
the output quality. There are standard tools for fault injection in a program. [76] presents a
LLVM [77] based fault injection tool. We however, implemented our own fault injector for
better control, as discussed in Section 3.4. In the fault model, we inject faults in data write
operations during an execution of the program. A program data to be tested for sensitivity
is selected and faults are injected at every assignment to this data during an execution. This
allows us to capture the effect of faults in the chosen data under test only and therefore, the
sensitivity analysis of a data is not influenced by the sensitivity of other application data. No
fault is injected when a data is read. Since any program data is expected to be initialized
before use, the proposed fault model presents an inexact value at every use of the data under
test during execution. If the data under test has no assignments during an execution, then the
fault model injects no faults, resulting in an exact computation.

3.3.2 Solution Methodology

Our work follows in the lines of [78], [79] which proposes probabilistic model checking
using acceptance sampling. Acceptance sampling is used in the context of quality control
of production systems where a sample of products are examined to either accept or reject
the production system [3]. We use hypothesis testing [80] for acceptance sampling in our
framework based on finitely many samples. In our context, a sample is an execution of the
application with an input and an injected error into an application data.

Definition 3.3 A sample is a random experiment that consists of an execution of a program
P and execution of a fault injected program P′. An outcome of the sample can be either a
success or a failure depending on whether the fault injected program P′ passes or fails the
user-defined acceptable threshold ε . �

Definition 3.4 A Bernoulli trial is a random experiment that can have one of two outcomes:
a success or a failure [81]. �

A fault injected program execution is interpreted as a Bernoulli trial [81] with a success or
failure outcome depending on the QoS of the output. The requirement is that an experiment
should complete in finite time to produce an output. Notice that we might have an infinite run
of an application after an inexact value is injected into a program data. This could be possible
if the injected inexact values induce an unbounded loop in the program. In our framework,
we observe an execution for a reasonable time bound and deem the trial as failed if it does

Chapter 3. Automated Sensitivity Analysis of Program Data Using Dynamic Analysis 51

not terminate within the time bound. It can be observed that the statistical experiment of
observing outcomes of n samples (trials) models a Binomial distribution, with the probability
f (x) of observing exactly x number of success given by:

f (x) =
(
n
x

)
px(1 − p)n−x (3.2)

where p and (1 − p) are the probabilities of observing a success and failure outcome of a
trial respectively. When x denotes the number of successes, (n − x) denotes the number of
failures. The mean of the distribution is µ = np and the variance is σ2 = np(1− p). For data
sensitivity analysis using acceptance sampling, we need to choose the number of trials n and
the expected number of success outcomes x out of the n trials to deem the data under test as
tolerable to approximation. To have a probabilistic confidence on the acceptance sampling,
we may decide on a minimum threshold on the probability of observing at least x success
outcomes denoted by θ, given by:

f (≥ x) = 1 − f (< x)

= 1 −
x−1∑
k=0

(
n
k

)
pk(1 − p)n−k

(3.3)

Note that the probability threshold θ given by Eq. 3.3 depends on n, x and p. If we consider
the value of p as 0.5, we need to choose an n and x such that the probability of Eq. 3.3
is larger than the probability threshold θ. For any program data, we can then perform n

fault injection trials and if the number of successful outcomes is larger than or equal to the
computed x, we can classify the data as insensitive. However, this method does not provide
any probability guarantee on the sensitivity classification since the considered minimum
probability of observing at least x success outcomes depends on the number of samples n and
the probability of a successful outcome p. Moreover, there is no bound on the probability of
making an error, i.e., accepting a sensitive data erroneously as insensitive or vice-versa.

To address the discussed issues of acceptance sampling using the probability density func-
tion of Binomial distribution, we propose to perform acceptance sampling using hypothesis
testing.

3.3.3 Acceptance Sampling using Hypothesis Testing

Hypothesis testing is a systematic way for testing a claim or hypothesis about a parameter in
a population, using data measured in a sample. To test a population parameter, we test two

Chapter 3. Automated Sensitivity Analysis of Program Data Using Dynamic Analysis 52

competing hypotheses i.e., the null hypothesis and the alternative / contrary hypothesis, only
one of which can be true. We illustrate these briefly below.

• Null hypothesis : denoted by H. The null hypothesis is the statement about the
population parameter that is assumed to be true.

• Alternative hypothesis : H′ is a statement that directly contradicts a null hypothesis.

To test a hypothesis, we need to translate a claim to a mathematical statement, for example, if
the claim value is k and the population parameter is µ, then some possible pairs of null and
alternative hypotheses are

H : µ ≤ k

H′ : µ > k

H : µ ≥ k

H′ : µ < k

H : µ = k

H′ : µ , k
(3.4)

The next step is to set the criteria for a decision which can decide whether to retain or reject
the value stated in the null hypotheses. A sample is selected from the population to measure
the population parameter. Finally, we compute the test statistic which produces a value that
can be compared to the criterion that was set before the sample was selected.

In our context of program data sensitivity, we assign an hypothesis and a contrary hypothesis
for every program data. For every v ∈ D, we propose a hypothesis that ∀e ∈ E, ∀` ∈
`e
v, (ve, `) → (vapprox, `) =⇒ R ∈ QoS , where E , `e

v , (ve, `) and (vapprox, `) are as defined in
Definition 3.2. Let us denote such an hypothesis by K . In our analysis, we test the following
null and contrary hypotheses:

H : Pr(K) < θ

H′ : Pr(K) ≥ θ
(3.5)

where Pr(K) is the probability that the hypothesis K is true.

Observation 3.1 It may be noted that the truth of the hypothesis H implies that the program
data v is sensitive by Definition 3.2. Similarly, the truth of the contrary hypothesis H′ implies
that the data v is insensitive. �

Definition 3.5 A successful Bernoulli trial is an evidence of the null hypothesis whereas a
failed trial is an evidence of the contrary hypothesis. �

The test of hypothesis can be performed using procedures for hypothesis testing [78], [82]. In
this way, sensitivity analysis of application data is formulated as an instance of the classical
hypothesis testing problem.

Chapter 3. Automated Sensitivity Analysis of Program Data Using Dynamic Analysis 53

Any statistical procedure for hypothesis testing has a probability of accepting a false hypoth-
esis. However, it is possible to have the probability of making an error reasonably low. The
probability of accepting the contrary hypothesis H′ when H holds is denoted as α and is
called a Type I error or false negative [83]. Similarly, the probability of accepting H when
H′ holds is denoted by β and is called a Type II error or false positive [83]. We expect the
testing procedure to have both α and β to be low (generally less than 0.5). The parameters
α and β define the strength of the acceptance sampling test. The probability of accepting
the hypothesis H (PH) with acceptance sampling test of strength 〈α, β〉 is shown in Figure
3.4a. When Pr(K) < θ, the null hypothesis is accepted with a probability of at least 1 − α,
shown as the grey region to the left of θ in the figure. When Pr(K) ≥ θ, the null hypothesis
is accepted with a probability of at most β, shown as the grey region to the right of θ.

Observation 3.2 It may be observed that in an acceptance sampling test, the probability
of accepting H when Pr(K) = θ should be at most β and for Pr(K) = θ − ε , where ε is
infinitesimally small, the probability of accepting H should be at least 1 − α. Acceptance
testing in such a case would either demand nearly exhaustive sampling of the sample space,
which is infeasible for large sized sample spaces or will have α = 1− β, meaning that keeping
the probability of making Type I error low makes the probability of Type II error high and
vice-versa. Therefore, a test-procedure with high strength (small α and β values) with few
test samples is hard to achieve. �

To overcome this problem, the use of indifference region has been proposed in literature
[78]. Two probabilities p0, p1 close to θ are used such that p0 > p1 and new hypotheses
H0 : Pr(K) ≤ p1 and H1 : Pr(K) ≥ p0 are tested instead. The null hypothesis H is accepted if
H0 is accepted and the contrary hypothesis H′ is accepted if H1 is accepted. If the probability
Pr(K) lies in the interval [p1, p0], the test is indifferent to both the null and the contrary
hypotheses and there is no bound on the probability of accepting a false hypothesis. This is
why the probability region defined by the interval [p1, p0] is called the indifference region.
Figure 3.4b shows the typical characteristics of a realistic acceptance sampling test using
indifference region [78], shown as the gray shaded area. Indifference region allows a smooth
transition from accept to reject decision and as it goes narrow, we approach the ideal behavior.
We now discuss the hypothesis testing procedure used in our framework.

3.3.4 Sequential Probability Ratio Test

We use sequential probability ratio test (SPRT) out of the many algorithms for hypothesis
testing [4], [78]. The principle behind SPRT is to decide whether additional experiments
need to be performed to accept or reject a hypothesis on the basis of the previously observed
outcomes. It requires provably an optimal number of trials to test an hypothesis when

Chapter 3. Automated Sensitivity Analysis of Program Data Using Dynamic Analysis 54

(a) Probability of Accepting the Null Hypoth-
esis H with a Hypothetical Acceptance Sam-

pling Test of Strength 〈α, β〉

(b) Probability of Accepting the Hypothesis
H0 : Pr(K) ≤ p1 with a Typical Acceptance
Sampling Test of Strength 〈α, β〉 using Indif-

ference Region.

Figure 3.4: Indifference Region in Acceptance Testing

Pr(K) = p0 or p1 [4]. After conducting k Bernoulli trials with outcomes x1, . . . , xk , the
procedure computes the ratio of the two probabilities as shown below:

p1k

p0k
=

k∏
i=1

Pr[Xi = xi |p = p1]

Pr[Xi = xi |p = p0]
=

pbk
1 (1 − p1)

k−bk

pbk
0 (1 − p0)k−bk

(3.6)

where Xi is a random variable associated with the ith Bernoulli trial and xi is the outcome of
the trial. p1k and p0k denote the probabilities of observing the sequence x1, . . . , xk given that
Pr[Xi = 1] = p1 and Pr[Xi = 1] = p0 respectively. bk =

∑k
i=1 xi is the number of successful

trials. The algorithm terminates by accepting the hypothesis H0 if:

p1k

p0k
≤ B (3.7)

and it accepts the hypothesis H1 if:

p1k

p0k
≥ A (3.8)

In practice, we choose A = 1−β
α and B = β

1−α for hypothesis testing with strength 〈α, β〉 to
closely match the strength [4]. The algorithm is guaranteed to terminate, either accepting H0

or H1. In our framework, the test strength 〈α, β〉 and the indifference region [p1, p0] are user
defined parameters.

Chapter 3. Automated Sensitivity Analysis of Program Data Using Dynamic Analysis 55

Running Time

We now discuss about the running time of the method used. The running time of SPRT
depends on two parameters, (1) the number of trials to decide the acceptance of the hypothesis
and (2) the time taken to complete a Bernoulli trial. It is shown in [4] that the number of
trials depends on the distance of the actual probability Pr(K) to the indifference region.
The number of trials tends to increase as Pr(K) gets closer to the indifference region and
gets maximum when it is equal to the center of the indifference region. The number of
samples decreases as Pr(K) moves away from the indifference region. The time taken to
complete a Bernoulli trial depends on the application. Applications that requires a long time
to complete are expected to result in reduced efficiency compared to applications that require
a few seconds to complete.

3.3.5 Overall Approach

A schematic of the dynamic analysis method with the fault model is shown in Figure 3.5. In
Algorithm 3.1, program data are tested for sensitivity with a hypothesis tester and partitioned
as either sensitive or insensitive. The hypothesis testing procedure is shown in Algorithm
3.2. The null hypothesis is assigned on the data to be tested in line 3. The exact output of
the program is computed on an input in line 4. Bernoulli trials are performed in a loop until
the null hypothesis is accepted or rejected in line 10, by executing the program with the same
input as in line 4 in the presence of faults in the data x, to get an approximate output. The
approximate output is compared with the exact one to either accept or reject the output as per
the acceptable QoS requirement in line 11. The SPRT test updates the ratio of p1k to p0k and
compares it with A and B to decide on the acceptability of the hypothesis in lines 16 to 21.

Algorithm 3.1 Dynamic Sensitivity Analysis
1: function PartitionData(P, D)
2: SD ← ∅, SD ← ∅
3: Initialize θ, indifference region [p1, p0], test strength α, β
4: for all x ∈ D do
5: res← TestSensitivity(P, x, θ, p0, p1, α, β)
6: if res then
7: SD ← SD ∪ {x}
8: else
9: SD ← SD ∪ {x}

10: end if
11: end for
12: end function

Chapter 3. Automated Sensitivity Analysis of Program Data Using Dynamic Analysis 56

Figure 3.5: Framework of Dynamic Sensitivity Analysis with Hypothesis Testing

Algorithm 3.2 Testing Sensitivity with Hypothesis Testing
1: function TestSensitivity(P, x, θ, p0, p1, α, β)
2: Assign hypothesis K for data x
3: Assign null hypothesis H0 : Pr(K) ≤ p1
4: re ← execution of P on an input ip
5: A = 1−β

α , B = β
1−α

6: k = 0 . number of Bernoulli Trials
7: bk = 0 . number of successful Bernouilli Trials
8: p1k = pbk

1 (1 − p1)
k−bk , p0k = pbk

0 (1 − p0)
k−bk

9: while H0 not accepted/rejected do
10: ra ← execution of P on input ip with faults in x
11: if QoS(ra, re) acceptable then
12: k = k + 1, bk = bk + 1 . Successful trial
13: else
14: k = k + 1
15: end if
16: p1k = pbk

1 (1 − p1)
k−bk , p0k = pbk

0 (1 − p0)
k−bk

17: if p1k
p0k
≤ B then

18: Accept H0 and return true
19: end if
20: if p1k

p0k
≥ A then

21: Reject H0 and return false
22: end if
23: end while
24: end function

Example 3.3 The results of running the dynamic sensitivity analysis on the motivational

Chapter 3. Automated Sensitivity Analysis of Program Data Using Dynamic Analysis 57

Confidence Measure θ
Data 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
lo SD SD SD SD SD SD SD SD

hi SD SD SD SD SD SD SD SD

size SD SD SD SD SD SD SD SD

mid SD SD SD SD SD SD SD SD

Table 3.1: Dynamic Sensitivity Analysis on Binary Search

example of binary search in Figure 3.2 is shown in Table 3.1. The confidence θ of the
analysis is the probability θ of Equation 3.5. A program data is classified as sensitive (SD)
in the table corresponding to a θ if the analysis accepts the hypothesis H of Eqn 3.5. Observe
that the data lo and hi are classified insensitive with a confidence of θ from 0.3 to 0.5 but
not for 0.6 and beyond. The data mid is classified as sensitive for all confidence values θ
from 0.3 to 1.0, since it is an array index data. The data size is marked as insensitive with
probability 0.9 and we do expect it to be highly insensitive. Observe that the data size is
marked as insensitive with a confidence θ = 1 by the analysis, however, size is not a dead
program data as discussed previously. This is an instance when the algorithm accepts the
contrary hypothesis, H′ : Pr(K) = 1 when the null hypothesis, H : Pr(K) < 1 is true and
therefore exhibits a Type I error. Therefore, we see that the analysis may infer sensitivity
of program data wrongly due to the presence of Type I and Type II errors, however, with
bounded probability. �

The dynamic analysis using SPRT is implemented keeping the probability of making Type I
and Type II errors, α and β respectively, fixed to 0.01. The width of the indifference region
[p1, p0] is fixed to 2δ where δ = 0.01.

3.4 Implementation

In our implementation, all the fault injection experiments on an application are conducted
with a fixed input to the application. Our fault model is implemented with program binary
instrumentation. We consider Java applications and perform bytecode instrumentation given
the bytecode for a classfile and the application data where faults are to be injected using
the Byte Code Engineering Library (BCEL) from Apache Commons [39]. At runtime, a
Java Agent [84] intercepts the execution and replaces the Java bytecode for the class under
inspection and injects a faulty value for the variable under test. We intend to emulate faults
in memory considering random memory bit flip errors. Under such memory faults, a faulty
value could be any random value in the range of the data. Therefore, to reflect memory bit
flip errors in the experiments, the faulty value is generated from a uniform distribution in the

Chapter 3. Automated Sensitivity Analysis of Program Data Using Dynamic Analysis 58

interval of the range of the data under test. We consider the following kinds of program data
in our implementation and instrument each as follows:

Fields: A Java class can have final/non-final, static/non-static data members. During in-
strumentation of a particular field variable, we set its initial value using the BCEL API to a
random value obtained from a uniform distribution and remove all instructions which change
its value.

Method Parameters: We set the values for the method parameters at the beginning of the
method and prevent all overwrites to its values in the successive instructions.

Method Local Variables: Each local variable in a method has a different scope of existence.
Two or more variables with the same name can exist in a method. Hence they must be
instrumented based on their scope. We track each write instruction for the variables within
their scope and replace them with a faulty value.

Method Return Value: Each method can have different points of exit i.e. they can have
multiple return statements. We instrument all those return statements, for methods having
non-void return type, to return the faulty value.

3.5 Evaluation

We evaluate our framework on applications [71], [72] which are known to be tolerant to
approximations. Our framework provides two types of tunable parameters. The first, is the
analysis confidence probability θ used in the hypothesis of Eqn. 3.5. The second, is the QoS
degradation tolerance threshold, γ, which provides a measure of how much approximation
could be tolerated in the application’s output. The value of γ depends on the QoS metric used
in the framework which can be any error metric like the mean square error, normalized error,
absolute error, root mean square error etc. as discussed below. The threshold γ specifies the
maximum tolerable error. Our analysis reports all loop counters and array indices as sensitive
by default, irrespective of any specified value of the parameters. Array indices are considered
as sensitive since an inaccurate value in the index may cause out of bound memory access.
Although loop counters can be insensitive in principle, they are conservatively assumed as
sensitive by our framework. For example, an approximate value in a counter of an empty
loop will be insensitive. However, it is unlikely to have programs with empty loops. In
programs with non-empty loops, approximate loop counters can potentially introduce large
errors depending on the loop instructions. We discuss below the QoS metrics used in our
experiments to validate our approximate data selection strategy.

Chapter 3. Automated Sensitivity Analysis of Program Data Using Dynamic Analysis 59

3.5.1 Applications for Evaluation

Applications in the Scimark 2.0 benchmark [71] are evaluated to test for performance and
accuracy of analysis on floating point intensive numerical computations. The applications in
the benchmark include kernels for the Fast Fourier Transform (FFT), LU decomposition of a
matrix (LU), Sparse Matrix Multiply (SMM), Successive Over Relaxation for solving system
of equations (SOR) and the Monte Carlo method (MC). We elaborate on each briefly below.

• Fast Fourier Transform (FFT) : This kernel performs complex arithmetic, shuffling,
non-constant memory references and trigonometric functions. The kernel performs a
one-dimensional fourier transform of 4K complex numbers.

• Jacobi Successive Over-relaxation (SOR) : This kernel is for solving a system of
linear equations. It uses a variant of the Gauss-Seidel method.

• Monte Carlo Integration : This kernel is to approximate the value of Pi (π). It
computes the integral of the quarter circle by choosing random points with the unit
square and computes the ratio of those within the circle.

• Sparse Matrix Multiply : This kernel performs matrix multiplication on an un-
structured spare matrix stored in compressed-row format with a prescribed sparsity
structure.

• Dense LU Matrix Factorization : This kernel computes the LU factorization of a
dense matrix using partial pivoting.

In addition to the Scimark benchmark, experimental results on a simple Raytracer 3, a 3D
image renderer, Jmeint - a triangle intersection detector in 3D and ZXing, a barcode decoder
4 application for mobile devices running on Android OS are also shown to illustrate the
scalability of our method. The following discussion presents a brief detail of these.

• Raytracer : It is a computer graphics application that renders image by tracing the
path of light as pixels in an image plane and simulates the real-word behavior of light
bouncing off surfaces and colors accumulating from their paths.

• Jmeint : It is a triangle intersection detection application that is used in 3D gaming.
The input is a pair of co-ordinates for two triangles in the 3-D space and the output is
a Boolean value which indicates whether the two triangles intersect [72].

• ZXing: ZXing is a bar-code reader application.

3 https://www.planet-source-code.com/vb/scripts/ShowCode.asp?txtCodeId=5590&lngWId=2
4https://github.com/zxing/zxing

Chapter 3. Automated Sensitivity Analysis of Program Data Using Dynamic Analysis 60

The benchmarks have been chosen as in [70] to enable a comparison of themanual annotations
reported in the paper.

3.5.2 QoS Metric

The QoS metric used in the evaluation of our framework is selected based on the application.
A brief description of some of the metrics are:

Normalized Mean Error (NME): We use this metric for evaluating the QoS distortion in
applications that produce single or multiple numerical results. A normalized error is given
by the absolute difference between the actual and the approximate result but the difference
is bounded by 1, i.e., if the absolute difference is greater than 1 then the normalized error is
taken as 1. The mean of the normalized errors is denoted as NME. Formally, NME is defined
as below.

N ME(x, x′) =

∑N
i=1 min(|xi − x′i |, 1.0)

N
(3.9)

xi and xi′ are the reference and the approximate values respectively. N is the number of
outputs.

Peak Signal to Noise Ratio (PSNR) [85]: PSNR is a commonly used metric for measuring
the noise introduced in an image due to a lossy compression. Given a reference image I and
a noisy image K, PSNR is defined as:

PSNR = 20 log10

(
MAXI
√
MSE

)
(3.10)

MAXI is the maximum possible pixel value of the image and Mean Squared Error (MSE) is
defined as:

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0
[I(i, j) − K(i, j)]2 (3.11)

I(i, j) and K(i, j) are the pixel values of image I and a noisy image K respectively. The size
of both I and K is m × n.

We use the PSNR metric to measure the QoS distortion introduced in image processing
applications with our proposed approximation. It is measured in the logarithmic decibel
scale (DB). Higher the value of PSNR, lesser is the noise in the image with respect to the
reference image. A PSNR of 20-25 DB is generally acceptable.

Chapter 3. Automated Sensitivity Analysis of Program Data Using Dynamic Analysis 61

Percent Error: We use this metric for benchmarks which produce a single numerical output.
Percent error between an exact value X and an approximate value X′ is given by |X−X ′ |

X ×100.

Matching / Exact: Some applications are evaluated without any error tolerance in the QoS.
We use this term to refer to theQoS comparison in applicationswhere the reference output and
the approximate output are compared for an exact match. If the outputs do not match exactly,
then the introduced approximation in the application is not acceptable. Essentially, this way
of measuring QoS acceptability does not allow any approximation in the application’s results
and is a strict notion of QoS acceptance. We use this metric for evaluating our methodology
on applications which produce a Boolean output.

The QoS degradation tolerance threshold, denoted by γ, can be any specified value between
0 and 1, considering normalized mean error as the metric. Setting γ = 0 specifies that
no error is to be tolerated in the application output. In this case, our analysis is going to
identify program data which are highly insensitive (e.g. dead variables). On the contrary,
setting γ = 1 specifies that any error is acceptable and therefore all data can be identified as
insensitive.

3.5.3 Evaluation of Dynamic Sensitivity Analysis

Evaluation results of our dynamic analysis method by varying the parameters θ and γ are
shown in Table 3.2 and Table 3.3. Table 3.2 shows an increase in the number of insensitive

data identifications by relaxing the QoS requirement and keeping the confidence measure
fixed at θ = 0.5. Similarly, Table 3.3 shows the increase in identifications by relaxing the
confidence measure and keeping the QoS degradation threshold fixed at γ = 0.5. Since
there is a probability of accepting a false hypothesis in our analysis (though very small),
the number of identified insensitive data may vary over runs of our analysis. Therefore,
the reported results are taken as the median over three runs. We have verified that there is
negligible change in the reported percentage of insensitive data derived over multiple runs
of our framework. We observe that for the benchmarks LU, MC and SMM, the percentage
of insensitive program data does not change by varying the parameters. This implies that
the insensitive data of these applications are highly insensitive and the other data are highly
sensitive.

Table 3.4 shows the number of trials that the dynamic analysis performed for different
confidence values over some program data in the benchmark applications. The experiment
uses the QoS tolerance parameter γ fixed at 0.5. A plot of the data is shown in Figure 3.6. For
the hypothesis K defined in Eqn. 3.5 on a data under test, let Pr(K) = p. It is known that the
number of trials in SPRT depends on the distance of the parameter θ from p [78]. The number

Chapter 3. Automated Sensitivity Analysis of Program Data Using Dynamic Analysis 62

QoS Percent Data Derived Insensitive
γ FFT SOR MC SMM LU

0.010 0 0 33 15 11
0.025 0 0 33 15 11
0.050 0 0 33 15 11
0.075 0 0 33 15 11
0.1 0 0 33 15 11
0.2 0 13 33 15 11
0.3 0 27 33 15 11
0.4 7 27 33 15 11
0.5 7 27 33 15 11

Table 3.2: Percentage insensitive data reported by our analysis on varying γ and fixed θ = 0.5

Con f . Percent Data Derived Insensitive
θ FFT SOR MC SMM LU Raytracer Jmeint
0.3 10 33 33 15 11 48 24
0.4 10 33 33 15 11 48 24
0.5 7 27 33 15 11 44 24
0.6 7 20 33 15 11 44 24
0.7 7 20 33 15 11 44 24
0.8 7 20 33 15 11 44 24
0.9 7 20 33 15 11 44 24

Table 3.3: Percentage insensitive data reported by our analysis on varying θ and fixed QoS
γ = 0.5 (Scimark2), PSNR=10.5 (Raytracer) and Exact (Jmeint)

of trials tends to increase as θ gets closer to p and it decreases as θ gets farther away from p.
Therefore, the plot in Figure 3.6 can give us an idea of p for the data under test. For example,
the number of trials for the considered data in FFT and SOR is maximum when θ = 0.5.
We can therefore deduce that Pr(K) ≈ 0.5. Similarly, we can deduce that Pr(K) ≈ 0.8
for the considered data in the application Jmeint. For the applications MC, SMM, LU and
Ray-tracer, the number of trials decreases on increasing θ from 0.3 to 0.9, which implies
that Pr(K) ≤ 0.3 for the considered data in these applications. In the application Zxing, the
number of trials increases on increasing θ from 0.3 to 0.9, which implies Pr(K) ≥ 0.9 for the
considered data.

Note that in SOR, the dynamic analysis classified the data as insensitive for θ = 0.5 and
as sensitive for θ = 0.6. This means that the hypothesis H : Pr(K) < 0.5 has failed (the
contrary hypothesis H′ : Pr(K) ≥ 0.5 has passed) and the hypothesis H : Pr(K) < 0.6 has
passed. This observation indicates that 0.5 ≤ Pr(K) < 0.6. Similarly in FFT, we get that
0.6 ≤ Pr(K) < 0.7. However, due to Type I and Type II errors in SPRT, Pr(K) may not
always be in the same interval. In general, the confidence that θ1 ≤ Pr(K) < θ2 is given by
the probability (1 − α)(1 − β), when the contrary hypothesis H′ : Pr(K) ≥ θ1 and the null

Chapter 3. Automated Sensitivity Analysis of Program Data Using Dynamic Analysis 63

Figure 3.6: Number of Trials vs. Confidence θ in SPRT

hypothesis H : Pr(K) < θ2 passes the test. Recall that α and β are the probability of making
a Type I and Type II error in the test respectively. Since the confidence values of Pr(K) ≥ θ1

and Pr(K) < θ2 are (1 − α) and (1 − β) respectively, the confidence of θ1 ≤ Pr(K) < θ2 is
(1 − α)(1 − β).

Application Data Number of Trials in SPRT
θ = 0.3 θ = 0.4 θ = 0.5 θ = 0.6 θ = 0.7 θ = 0.8 θ = 0.9

FFT n 261 (I) 626 (I) 1075 (I) 817 (I) 249 (S) 136 (S) 52 (S)
SOR N 219 (I) 601 (I) 1075 (I) 839 (S) 267 (S) 105 (S) 49 (S)
MC x 161 (S) 138 (S) 115 (S) 92 (S) 69 (S) 46 (S) 23 (S)
SMM row 161 (S) 138 (S) 115 (S) 92 (S) 69 (S) 46 (S) 23 (S)
LU Aii 161 (S) 138 (S) 115 (S) 92 (S) 69 (S) 46 (S) 23 (S)

Zxing row 69 (I) 92 (I) 115 (I) 138 (I) 161 (I) 184 (I) 207 (I)
Ray-tracer xe 161 (S) 138 (S) 115 (S) 92 (S) 69 (S) 46 (S) 23 (S)
Jmeint xx 97 (I) 146 (I) 197 (I) 226 (I) 401 (I) 1050 (I) 321 (S)

Table 3.4: Number of trials in dynamic analysis of a single data by varying confidence

3.5.4 Experimental comparison with other methods

Our proposed dynamic analysis is most similar to ASAC [69], which also proposes a method
for automated sensitivity analysis of programdata using a statisticalmethod. We implemented
the ASAC algorithm with the fault injection model presented in Section 3.3.1. In order to
obtain an interval to select a random instrumented value for fault injection on a data, [69]
proposes performing a static range analysis. In our implementation, we do not perform a
range analysis since our goal is to emulate memory bit flip errors which can result in any
erroneous data in the datatype range and therefore, selecting fault values from an obtained
range by static analysis is not justified. Table 3.5 reports the percent data identified as
insensitive by ASAC as compared to our analysis for the Scimark 2.0 benchmark. The QoS

Chapter 3. Automated Sensitivity Analysis of Program Data Using Dynamic Analysis 64

metric used for the applications is normalized mean error, with QoS tolerance γ = 0.5. Our
analysis derivations are with a confidence of θ = 0.5. The algorithm in ASAC has two tunable
parameters to qualitatively improve the confidence of the derivation. One of the parameters
is denoted as the discretisation constant k and the other is denoted as the number of samples
m. The derivation confidence increases with larger values of k and m. We choose k = 30
and m = 100 for our experiments which can be considered giving derivations with medium
to high confidence. We observe that the performance of our analysis is better than ASAC
mostly because it requires fewer executions. We also observe that if there is a highly sensitive
data in the set of data tested by ASAC, all the data are derived as sensitive. This is because,
the experiments in ASAC are performed by introducing perturbations simultaneously in all
the data and high sensitivity of a single data in the set results in all outcomes failing the
QoS test. This is a limitation of ASAC. For example, 0% data is derived as insensitive in
the application MC because we include a data under_curve in the set of data to be tested by
ASAC which is highly sensitive. A similar phenomenon is also seen in the application FFT.

ASAC Our Analysis
Application LOC %Data Tested %I Time (Sec) %I Time (Sec)

MC 22 100 0 44 33 1
SMM 29 38 22 76 40 18
SOR 36 60 33 92 27 27
FFT 119 62 0 163 7 22
LU 165 35 9 155 11 41

Table 3.5: Performance comparison of ASAC and our analysis

3.5.5 Reliability Evaluation

To evaluate the reliability of our analysis, we compare our sensitivity classification with
manual annotations in the applications reported in [70] in which approximable data are
annotated with the @approx keyword. The authors of [70] mention that an approximate
value in their manual annotations guarantees that the application does not crash and keeps
a balance between reliability and energy saving. We observe the output of 1000 executions
of the applications in the benchmark by injecting errors in all the manually annotated data
and report the percentage of outputs that failed the QoS degradation threshold. Similarly, we
perform 1000 executions of the benchmark applications by injecting errors in insensitive data
derived by us with confidence θ = 0.3 and θ = 0.5 respectively and report the percentage of
outputs failing the same QoS degradation threshold. The QoS threshold is fixed to γ = 0.5
for the QoS metric of normalized error, PSNR ≥ 10.5 for the QoS metric of PSNR.

Chapter 3. Automated Sensitivity Analysis of Program Data Using Dynamic Analysis 65

For two applications, there is no tolerance to QoS degradation. A comparison of the percent-
age of output failures is reported in Table 3.6. Column 5 (#Manual Annot.) shows the number
of data in the application that is annotated as approximable in [70], while Column 6 (%Fail
Manual) shows the percentage of output failures with inexactness in the manually annotated
approximable data. Column 7 (%Data our analysis Tested) shows the percentage of data that
is tested by our analysis with hypothesis testing. The eighth and eleventh columns (%I) show
the percentage of data in the application that is classified as insensitive by our analysis with
confidence θ = 0.3 and θ = 0.5 respectively. We see that 100% of the executions failed the
QoS requirement for the applicationsMC, Ray-tracer, LU and Zxing when there is any inexact
value in the manually annotated data. On the other hand, 100% of the executions passed the
same QoS requirement when there is an inexact value in the data derived as insensitive by our
analysis with confidence θ = 0.5 in MC, Ray-tracer and LU. However, 10% of the executions
failed the QoS in Zxing. Considering that our analysis performed the sensitivity classification
with confidence probability of θ = 0.5, the number of executions that may fail the QoS should
be less than 50% of the executions with inexact value in the insensitive data. In both the
applications Zxing and Jmeint, the percentage of executions that failed with inexactness in
data derived as insensitive by us, is less than 50% (10% and 29% respectively). We also see
that SOR, FFT, Jmeint and Zxing failed in 49%, 77%, 29% and 10% of the executions with
inexact value in insensitive data derived with confidence θ = 0.3. This shows the reduced
reliability of the derivations with reduced confidence parameter value of θ. Note that a
confidence θ = 0.3 allows at most 70% failure of executions with inexactness in the derived
insensitive data. The observed failure percentage is less than 70% except in FFT (77%). We
believe that this is because of the classification of some sensitive data as insensitive due to
Type I or Type II errors. The percentage of insensitive data in a program gives a measure of
its error resiliency. For example, we can deduce that the application Ray-tracer is the most
error resilient of the applications tested with our analysis since it has 44% of insensitive data
with confidence θ = 0.5.

The reliability of our analysis is further illustrated on the application Ray-tracer, a 3D image
renderer. Figure 3.7b shows the rendered image when inaccuracies are injected in all the
data identified as insensitive by our analysis with a confidence of θ = 0.5. Figure 3.7c shows
the rendered image when inaccuracy is injected in a manually annotated approximable data
which our analysis classified as sensitive. The perceived noise in Figure 3.7c is much more in
comparison to Figure 3.7b. This shows that inaccuracy in even one sensitive data may cause
unacceptable program output.

Chapter 3. Automated Sensitivity Analysis of Program Data Using Dynamic Analysis 66

θ = 0.3 θ = 0.5
Application QoS Metric QoS (γ) LOC #Manual

Annot.
%Fail
Manual

%Data
Our
analysis
Tested

%I Time
(Sec)

%Fail %I Time
(Sec)

%Fail

MC Normalized Mean Error 0.5 22 2 100 100 33 1 0 33 1 0
SMM Normalized Mean Error 0.5 29 4 0 54 15 18 0 15 18 0
SOR Normalized Mean Error 0.5 36 3 0 60 33 27 49 27 27 0

RayTracer PSNR ≥ 10.5 111 11 100 55 48 221 0 44 613 0
FFT Normalized Mean Error 0.5 119 24 0 62 10 22 77 7 22 0
LU Normalized Mean Error 0.5 165 22 100 36 11 41 0 11 41 0

Jmeint Pass if correct, Fail otherwise Exact 2694 109 28 50 24 947 29 24 1150 29
ZXing Pass if correct, Fail otherwise Exact 15785 115 100 80 35 1188 10 35 1435 10

Table 3.6: Percentage of output failing QoS with confidence θ = 0.3 and θ = 0.5

(a) Original
Image

(b) Rendered image with our
analysis guided approximation

(c) Rendered image with man-
ually annotated data

Figure 3.7: Illustrating QoS reliability in Raytracer rendered image with our analysis guided
approximation

3.5.6 Summary

Statistical methods are good tools for sensitivity analysis in mathematical and computational
models. For example, the two-sample Kolmogorov-Smirnov test (K-S test) is a statistical
method for testing the hypothesis that two given cumulative distribution functions (CDF)
are identical. The maximum distance between the CDFs (D-statistic) is computed and
the test accepts the hypothesis if this distance is less than a critical threshold. Such a
statistical procedure for hypothesis testing can be used for sensitivity analysis of a model.
A standard way of sensitivity analysis using K-S test is to run Monte-Carlo simulations of
the model on different values of the input factors as statistical experiments and partition the
simulation output as either an acceptable or unacceptable event, based on some criteria.
The criteria of acceptance of a model behavior or simulation output could be any metric
showing the deviation of the observed behavior from the expected behavior. The CDF of the
acceptable and unacceptable events are passed to the K-S test. A rejected hypothesis indicates
a considerable distance between the two CDFs, indicating sensitivity of the model to the input
factors. Similarly, there are other sensitivity analysis techniques based on statistical methods
such as variance and correlation based analysis, Bayesian uncertainty estimation etc. There
are sensitivity analysis techniques not using statistical methods too. A simple such analysis is
by computing the partial derivative of a model output with respect to an input factor. These
remain to be explored in future.

Chapter 3. Automated Sensitivity Analysis of Program Data Using Dynamic Analysis 67

The dynamic analysis step requires a number of program executions to complete hypothesis
testing. There can be applications where the executions are sensitive to the input. In such
applications, the executions used for testing should be selectedwith an input sampling strategy
in order to satisfy some coverage criteria such as all branch or all statement coverage. This
might require the use of automated test case generators to intelligently sample the inputs for
testing. However, for applications for which automated test case generators cannot generate
inputs, a corpus of inputs for the dynamic analysis engine is to be created manually and this
can be challenging. Another limitation of dynamic analysis is that there can be code and data
covered by complex conditionals which are triggered in very few specific executions. Such
data are likely to bemarked as insensitive by the analysis but they can be critical. For example,
if there is data used in triggering an error handler inside a complex conditional branch, then
such a critical data gets classified as insensitive. Perhaps global sensitivity analysis (GSA)
techniques might be useful in such applications instead of regional sensitivity analysis (RSA)
and this remains a subject of future research.

For each program data, the dynamic analysis requires substantial number of program exe-
cutions to complete the hypothesis. In term of scalability, for applications that require long
time to complete, dynamic analysis will fail to scale. This motivates us to look for alternative
methods to improve the sensitivity analysis step. In the following chapter, we present a
static-dynamic combined sensitivity analysis scheme to address some of these issues by per-
forming dynamic analysis on a subset of initial program data and then using this information
to statically infer the sensitivity of the remaining program data.

68

Chapter 4

A combined static-dynamic method for
sensitivity analysis of program data1

4.1 Introduction

For programs having a large number of data elements, the dynamic analysis method discussed
in the previous chapter can be slow since an hypothesis for each data needs to be tested. Thus,
compute and data intensive programs may take a long time to terminate, making each trial
during the hypothesis testing expensive, thereby slowing down the overall analysis. To
address these performance issues, this chapter presents a hybrid static-dynamic combined
sensitivity analysis approach. We first present an overview of our proposed technique and then
demonstrate the efficiency of our approach on some approximate computing benchmarks.

The hybrid analysis approach starts with an initial set of data sensitivity analysis outcomes
obtained from the dynamic analysis step discussed in Chapter 3. Starting with this set, it
uses dataflow information together with data sensitivity rules that basically govern the flow
of information between program data, to further enrich the outcomes. The analysis then
statically classifies the program data as either sensitive (non-approximable) or insensitive
(approximable).

1The contents of this chapter have been published at B. Nongpoh, R. Ray, S. Dutta, and A. Banerjee,
“Autosense: A framework for automated sensitivity analysis of program data”, IEEE Trans. Software Eng.,
vol. 43, no. 12, pp. 1110–1124, 2017. doi: 10.1109/TSE.2017.2654251. [Online]. Available: https:
//doi.org/10.1109/TSE.2017.2654251.

https://doi.org/10.1109/TSE.2017.2654251
https://doi.org/10.1109/TSE.2017.2654251
https://doi.org/10.1109/TSE.2017.2654251

Chapter 4. A combined static-dynamic method for sensitivity analysis of program data 69

Dynamic Analysis

T

T

I S

Static Analysis

Application

{Initial Data
Sensitivity Set}

Input sets

Probability factor, QoS Metric

{Final Data
Sensitivity Set}

Figure 4.1: High level overview of our hybrid static-dynamic analysis

Figure 4.1 shows a high level overview of our hybrid analysis approach. It consists of two
steps as described below.

• Dynamic analysis: A subset of program data is chosen as the initial set for sensitivity
analysis. The analysis then classifies each program data in the initial set as either
sensitive or insensitive using the hypothesis testing procedure discussed in Chapter 3.

• Static analysis: The input to this is the target application and the sensitivity set obtained
from dynamic analysis. The analysis then classifies the remaining program data based
on the information from the initial sensitivity set, with a static dataflow analysis.

Our contribution in this chapter is a hybrid analysis method for approximability analysis,
together with experimental results on public domain benchmarks.

In the following sections, we provide elaborate discussions on our approach.

4.2 Detailed Methodology

In this section, we present our approach in detail. We begin with an illustration of the static
analysis step, followed by an illustration of the overall framework.

4.2.1 Static Analysis for Program Data Sensitivity

We now discuss our contribution of inferring data sensitivity using static analysis, building
on the foundations of data flow analysis and lattice theory, presented in Chapter 2. As
discussed earlier, the idea behind data flow analysis [25] is to abstract the program structure
as a control flow graph and define data flow equations specifying the value of the analysis of
interest at the entry and exit points of the program statements. The entry point of a program
statement denotes the program point just before the statement and the exit point denotes the

Chapter 4. A combined static-dynamic method for sensitivity analysis of program data 70

program point immediately following that statement. The equations are solved for a may
or must analysis solution at the program points [25]. In Chapter 2, we have discussed that
a may analysis solution at a program point is satisfied by at least one execution path. The
must analysis solution at any program point is satisfied by every execution path. There is
an underlying framework in solving the data flow equations, called theMonotone framework
[25]. Any data flow analysis which is formulated as a monotone framework can be solved
with a generic maximum fixed point algorithm (MFP) [25]. A monotone framework consists
of two components, a complete lattice L over the property space satisfying the ascending
chain condition and a set F : L → L of monotone functions closed under composition and
containing the identity function. Monotonicity and the ascending chain property of the lattice
guarantee termination of the MFP algorithm on lattices of finite height. The property space is
the domain of values of interest to any program analysis, e.g., intervals for interval analysis,
set of variables for live variable analysis etc. The set F contains the transfer functions of the
analysis. A transfer function f` ∈ F specifies how the program statement at a program point
` can transform the value of the analysis.

Data Sensitivity Lattice

We present an approach for static analysis of program data sensitivity as an instance of the
monotone framework. An instance of a monotone framework consists of the following:

• A complete lattice, L, of the framework

• The space of functions, F , of the framework.

• A finite control flow graph of the program P, f low(P).

• A set of initial labels, E , containing the labels of statements of program P which are
its entry points.

• An initial value of the analysis, init ∈ L, for labels ∈ E .

• A mapping, f : Labels → F , which maps each program statement label to a transfer
function in F .

where a label of a statement in a program is a unique natural number assigned to the statement.
Labels is the set of all such labels of a program. The elements of the complete lattice L of
our analysis are mappings σ : D → {⊥, S, I,>}. σ(x) = ⊥ denotes that no information is
known about the data x whereas σ(x) = > denotes that x may be sensitive or insensitive.
σ(x) = S and σ(x) = I denote x to be sensitive and insensitive respectively. Borrowing from
the work on language based information flow methods to ensure security properties in [86],

Chapter 4. A combined static-dynamic method for sensitivity analysis of program data 71

we define a data sensitivity lattice over the range of σ, i.e., {⊥, S, I,>} as shown in Figure
4.2.

Figure 4.2: Data Sensitivity Lattice

Definition 4.1 The partial order v on σ is defined as follows:

∀σ : ⊥ v σ

∀σ1, σ2 : σ1 v σ2 iff ∀x, σ1(x) vD σ2(x).
(4.1)

where ⊥ ∈ σ maps every x ∈ D to ⊥, vD denotes the partial order relation of the data
sensitivity lattice. �

Definition 4.2 The join operation over σ is defined as:

(σ1 t σ2)(x) = σ1(x) t σ2(x). (4.2)

�

Transfer Functions

The transfer functions in our analysis are based on the assumption that approximate or in-
sensitive data do not flow into sensitive data. A similar approach is adopted in the EnerJ
programming model [48] where programmers have the provision to annotate datatypes with
@approx or @precise keywords but the type-checker does not allow assignment of approx-
imate data into precise ones. Considering such a flow restriction on approximate programs,
we define the transfer functions of our assignment statements. The transfer function for all
other types of statements are considered to be an identity function. Considering a general
assignment statement block [x := a], a being any expression, we define the transfer functions

Chapter 4. A combined static-dynamic method for sensitivity analysis of program data 72

of our analysis as:

[x = a] : f (σ) =

σ(x → I) if ∀v ∈ FV(a), σ(v) = I

σ(x → S) if ∀v ∈ FV(a), σ(v) = S

σ(x → >) if ∃u, v ∈ FV(a)

s.t. σ(u) = S, σ(v) = I

σ if FV(a) = ∅

[· · ·] : f (σ) = σ

(4.3)

where [· · ·] denotes any program statement which is not an assignment statement and FV(a)

is the set of all free variables of the expression a. Essentially, we classify the data in the lhs
of the assignment statement as insensitive if the data in the rhs of the assignment statement
are classified as insensitive. In this case, since insensitive data is flowing into the lhs data
x, we classify it to be insensitive as well. Similarly, we classify the data in the lhs as
sensitive if the data elements in the rhs of the assignment statement are already classified
to be sensitive. This expresses the condition that sensitive data should flow into sensitive
data only. When there are both sensitive and insensitive data in the rhs, we are inconclusive
about the sensitivity information of the lhs data x, and we assign it to the > element of the
data sensitivity lattice. In the last case, when there is no free variable in the rhs (i.e, a is an
expression with constants), we keep the sensitivity mapping of the argument.

We now present the definition of our static sensitivity analysis:

Definition 4.3 Sensitivity Analysis (SA) is an instance of a monotone framework consisting
of:

(i) The complete lattice L = (σ, v,t) such that σ : D → {⊥, S, I,>} and v, t are as
defined in Eq. 4.1 and Eq. 4.2 respectively.

(ii) The set of monotone functions F = { f : σ → σ}

(iii) A finite control flow graph of the program, f low(P).

(iv) A set of initial labels of the program, E .

(v) An initial value of the analysis, σinit ∈ L, for each label in E .

(vi) A mapping, f : Labels→ F , which maps the labels ` of the assignment statements of
P to the functions in F as defined in Eq. 4.3 and maps all other statement labels to the
identity function.

Chapter 4. A combined static-dynamic method for sensitivity analysis of program data 73

σinit is a given initial data sensitivity mapping. If no sensitivity information is known initially,
then σinit is ⊥. Note that with σinit = ⊥, our proposed analysis is expected to produce a
solution of σ = σinit = ⊥ , since it propagates the initial known sensitivity information by the
data flow relations. Therefore, the effectiveness of the proposed method depends largely on
σinit . �

In this context, Section 4.2.2 discusses our approach of using the previously proposed dynamic
analysis methods to initialize σinit . While solving our static analysis, we do not update the
sensitivity mapping of program data that is already mapped to sensitive(S) or insensitive(I)
by σinit .

It is easy to see that L satisfies the ascending chain condition since the number of elements
in L is finite. F contains the identity function and is closed under composition. An instance
of the analysis can be solved using the maximum fixed point algorithm (MFP) [25] using Eq.
4.4.

SAentry(`) =

⊔
SAexit(`

′) | (`′, `) ∈ f low(P) if ` < E

⊥ if ` ∈ E

SAexit(`) = f`(SAentry(`)), where f` = f (`).

(4.4)

SAentry(`) and SAexit(`) denote the solution of the analysis at the entry and exit points of
the statement labeled `. After obtaining a solution of the analysis, we get the set of sensitive
data D using Eq. 4.5.

SD =
⊔
{SAexit(`) | ` ∈ f inal} (4.5)

where f inal is the set of labels of the exit points of a program. Eq. 4.5 states that the data
sensitivity is the join of the sensitivity derived at all the exit points of the program.

4.2.2 Combining Static and Dynamic Analysis

As discussed, the effectiveness of the static analysis depends on the initial known sensitivity
information in σinit . We propose to obtain σinit by running our dynamic analysis presented
in Chapter 3 Section 3.3 on some of the data from D. In our dynamic analysis, we perform
dynamic analysis on the following types of data, (1) global data, (2) method parameters and
(3) method local data whose expression has constant(s) or function call(s). We then apply
static analysis method-wise. We perform the sensitivity of method parameters and global data
dynamically as method local data are likely to be data dependent on its method parameters

Chapter 4. A combined static-dynamic method for sensitivity analysis of program data 74

and global data. Local variables which are initialized to constants are tested dynamically
because the static analysis would not be able to identify the sensitivity of such variables.
Method variables for which the assignment expression has a function call are also tested
dynamically because their sensitivity depends on the sensitivity of the return values of the
functions which might not be known at the time of solving the analysis statically.
The MFP algorithm is an iterative procedure that processes the edges (`, `′) of the flow
graph f low(P), until no further edges are left for processing. The edges to be processed are
collected in a data structure called worklist. Initially, all the edges of f low(P) are inserted
in the worklist. Another data-structure, Analysis, stores the current analysis solution at the
entry of a statement labeled at i at Analysis(i). Initially, Analysis(i) contains the initial value
of the analysis. In an iteration, an edge (`, `′) is removed from the worklist and the transfer
function f` = f (`) is applied on Analysis(`). If f`(Analysis(`)) is not v Analysis(`′)

then Analysis(`′) is updated to f`(Analysis(`))
⊔

Analysis(`′) and all the edges (`′, `′′) in
f low(P) are inserted into the worklist. The intuition behind inserting the edges (`′, `′′) into
the worklist is that since Analysis(`′) is updated, the Analysis(`′′) needs to be recomputed.
The iterations continue until the worklist is empty indicating that the fixed point solution
has been reached for the analysis at every program statement.

Figure 4.3: Control Flow Graph of an Average Routine

Example 4.1 We illustrate the proposed static-dynamic hybrid sensitivity analysis over an
averaging routine for N numbers. The control flow graph of the program is shown in
Figure 4.3. The superscripts of the program statements denote the labels associated with the
statements for ease of illustration. The sensitivity of the program data N , a and sum are
derived using dynamic analysis as per the initialization rules discussed in Section 4.2.2. Let
the derived sensitivity of N , a and sum be insensitive (I) by the dynamic analysis. The initial
value of the analysis, σinit , therefore assigns N , a and sum to I and the remaining data avg

to ⊥. The worklist initially contains all the edges W = {(1, 2), (2, 3), (2, 4), (3, 2), (4, 5)}. The
MFP iterations and the analysis value at every entry point is shown in Table 4.1. The table

Chapter 4. A combined static-dynamic method for sensitivity analysis of program data 75

Analysis value at entry points
Iters Worklist 1 2 3 4 5
1 {(1,2),. . ., (4,5)} N → I,

a → S,
sum → I,
avg → ⊥

N → I,
a → S,
sum → I,
avg → ⊥

N → I,
a → S,
sum → I,
avg → ⊥

N → I,
a → S,
sum → I,
avg → ⊥

N → I,
a → S,
sum → I,
avg → ⊥

2 {(2,3),. . ., (4,5)} N → I,
a → S,
sum → I,
avg → ⊥

N → I,
a → S,
sum → I,
avg → ⊥

N → I,
a → S,
sum → I,
avg → ⊥

N → I,
a → S,
sum → I,
avg → ⊥

N → I,
a → S,
sum → I,
avg → ⊥

3 {(2,4),. . ., (4,5)} N → I,
a → S,
sum → I,
avg → ⊥

N → I,
a → S,
sum → I,
avg → ⊥

N → I,
a → S,
sum → I,
avg → ⊥

N → I,
a → S,
sum → I,
avg → ⊥

N → I,
a → S,
sum → I,
avg → ⊥

4 {(3,2),(4,5)} N → I,
a → S,
sum → I,
avg → ⊥

N → I,
a → S,
sum → I,
avg → ⊥

N → I,
a → S,
sum → I,
avg → ⊥

N → I,
a → S,
sum → I,
avg → ⊥

N → I,
a → S,
sum → I,
avg → ⊥

5 {(4,5)} N → I,
a → S,
sum → I,
avg → ⊥

N → I,
a → S,
sum → I,
avg → ⊥

N → I,
a → S,
sum → I,
avg → ⊥

N → I,
a → S,
sum → I,
avg → ⊥

N → I,
a → S,
sum → I,
avg → ⊥

6 Empty N → I,
a → S,
sum → I,
avg → ⊥

N → I,
a → S,
sum → I,
avg → ⊥

N → I,
a → S,
sum → I,
avg → ⊥

N → I,
a → S,
sum → I,
avg → ⊥

N → I,
a → S,
sum → I,
avg → I

Table 4.1: MFP Iterations for SA of an Averaging Routine

entries show the value of the analysis at the entry points of the program statements, i.e, the
mapping σ from the program data to the elements of the data sensitivity lattice. In the first
iteration, the edge (1, 2) is removed from theworklist and the transfer function corresponding
to the assignment statement labeled by 1 (sum = 0) is applied. Since the rhs is a constant,
there is no free variable and the sensitivity mapping remains unchanged at Analysis(2). In
the second iteration, the edge (2, 3) is removed from the worklist and the transfer function
corresponding to the f or statement, the identity function, is applied on Analysis(2) resulting
in no change. Similarly, edge (2, 4) is removed from the worklist in the third iteration and
results in no change of values in Analysis. In the fourth iteration, the edge (3, 2) is removed
and also results in no change of values in Analysis since the lhs of the assignment statement
labeled by 3 is sum which is already mapped as insensitive (I) by σinit and we do not update
mappings by σinit . In the fifth iteration, the last remaining edge in the worklist, (4, 5) is
removed and the transfer function corresponding to the assignment statement labeled by 4 is
applied on Analysis(4). The free variables of the rhs are N and sum which are both mapped
as insensitive(I) in Analysis(4). Therefore, the transfer function f (4) maps the lhs data avg

Chapter 4. A combined static-dynamic method for sensitivity analysis of program data 76

Figure 4.4: Performance of Static-Dynamic Combined Analysis in Comparison to Dynamic
Analysis

as insensitive(I). The updated mapping σ is not v to the old Analysis(5) since σ(avg) = I

is not v to the sensitivity of avg in Analysis(5) which is ⊥. Thus, Analysis(5) is updated to
Analysis(5) t σ = σ. This modified mapping is shown in Analysis(5) in iteration 6 of the
table. At this stage, the worklist is empty and the algorithm terminates. Overall, we see that
the analysis value remains the same as σinit in all the iterations except the last. �

4.3 Evaluation

In this section, we show the performance gain with our proposed static-dynamic combined

Application TP FP FN Precision (%) Recall (%)
FFT 0 0 3 0 0
SOR 3 0 0 100 100
MC 1 0 1 100 50
SMM 2 0 0 100 100
LU 0 0 9 0 0

Raytracer 0 1 2 0 0

Table 4.2: Precision and Recall of the Static-Dynamic Combined Analysis in Comparison
to Dynamic Analysis

sensitivity analysis as discussed in Section 4.2.2. Figure 4.4 shows the performance improve-
ment on an average over multiple runs. Our analysis is implemented to analyze Java programs
and it performs the analysis class-wise and method-wise.The analysis of Raytracer is most
expensive with 110 seconds since it involves an expensive image rendering algorithm. The

Chapter 4. A combined static-dynamic method for sensitivity analysis of program data 77

dynamic analysis in combination with the static sensitivity analysis of the Raytracer program
takes 39 secs, though it fails to identify many insensitive data. Table 4.2 shows that the gain
in performance with the combined analysis is at the cost of precision and recall in some cases.
The precision and recall are compared against the sensitivity derivations using the dynamic
analysis only method with hypothesis testing, as described in the previous chapter. In the
table, TP, FP and FN denote the number of true positives, false positives and false negatives
respectively. A true positive means that the data classified as insensitive by our sensitivity
analysis (SA) is also classified as insensitive by the dynamic analysis. A false positivemeans
that the data classified as insensitive by SA is classified sensitive by dynamic analysis and a
false negativemeans that the data classified as sensitive by the combined analysis is classified
as insensitive by dynamic analysis. The precision is computed as TP

(TP+FP) ×100 and the recall
is computed as TP

(TP+FN) × 100. Observe that the static-dynamic combined analysis displays
100% precision and 100%, 50% and 100% recall for SOR, MC and SMM respectively and
completes much faster than the dynamic analysis alone. Note that the poor precision is not
because of high false positives but because of low true positives. In essence, the combined
analysis is efficient but misses to identify many insensitive data of a program. The precision
of the combined analysis is expected to increase when the combination uses more of dynamic
analysis and the performance is expected to increase when the combination uses more of
static analysis.

Reliability Analysis: Table 4.2 shows the precision and recall of the hybrid analysis tech-
nique. It may be noted that there is only 1 false positive, for the application Raytracer.
Therefore, the sensitivity classification of the combined analysis is mostly in accordance with
that of the the monolithic dynamic analysis. Since, we have already tested the reliability
of our dynamic analysis (presented in Section 3.5.5), a separate reliability testing for the
static-dynamic combined analysis is not carried-out.

4.4 Summary

Identifying insensitive error resilient data of an application is non-trivial, especially when the
application is large and has substantial data and control dependencies. Manual annotation
of data may not be reliable and may result in unacceptable output even when one data is
mis-annotated as insensitive / resilient in approximation aware programming languages like
EnerJ. This chapter and the previous one present our contributions in this direction. In this
chapter, to address the limitations of a dynamic analysis only approach, a combination of
static and dynamic sensitivity analysis is proposed that is efficient, especially for applications
running compute intensive algorithms, but results in many false negatives compared to the

Chapter 4. A combined static-dynamic method for sensitivity analysis of program data 78

dynamic analysis. However, 100% precision with the combined analysis could be achieved
for some of the benchmarks and this is quite encouraging for our further analysis.

Once the data and instructions that are approximable are identified, the next step that we
propose is to make use of this information in an execution environment to derive maximum
benefits. While there exists proposals in literature to use the sensitivity analysis output to
modify appropriate program segments or parts of the generated code, for faster execution
or energy savings, without compromising program output beyond the accepted threshold,
we take a different route altogether in this thesis. The main highlight of our approach is to
couple this approximability information with the execution runtime, thereby exploiting this
advantage to sometimes go ahead with approximate / partially incorrect outcomes without
the need for execution rollbacks. In the following chapters, we present our proposals of using
the outcomes of our approximability analysis inside processor runtimes during execution for
more performance and energy benefits. In the next chapter, we discuss techniques to aid spec-
ulative execution in modern processors by embracing approximate computing. In particular,
we propose to selectively relax the performance penalty of load-value mis-predictions and
branch mis-predictions by avoiding execution roll-backs in a pipelined execution for data and
instructions that are found approximable by our analysis methods proposed in this chapter.
In the following chapter, we extend the same philosophy to a concurrent execution environ-
ment for a multi-processor shared cache setup. The way we couple approximate computing
with speculation and runtime execution through the processor runtime is quite novel and
distinctly different from approaches existing in literature, and has been seldom looked at as
well in the program analysis or approximate computing research community, to the best of
our knowledge.

79

Chapter 5

Improving Runtime Efficiency of
Programs using Approximate
Computing1

In this chapter, we propose approximate computing techniques that are intrinsic to the ar-
chitecture on which the application executes. We adapt the sensitivity analysis methods
discussed in the previous chapters to perform approximability analysis of instructions, par-
ticularly load and branch instructions. Using the sensitivity knowledge of these instructions,
we propose a mechanism for improving the performance and energy usage of a program
running on modern processors. Modern processors use speculative execution extensively
for performance enhancements. However, on a mis-speculation, a performance penalty is
associated as an execution roll-back. In the approximate computing paradigm, instructions
can be marked as either approximable or non-approximable. In this work, we perform the
sensitivity analysis of load and branch instructions and propose a speculative execution with
a no roll-back policy for approximable instructions. The sensitivity analysis that is presented
in the previous chapters is able to infer the sensitivity of a program to faults in an individual
program data or instruction. This chapter further proposes an analysis technique based on
Bayesian analysis that addresses the sensitivity of a program to faults in a set of data and
instructions together.

1The contents of this chapter have been published at B. Nongpoh, R. Ray, M. Das, and A. Banerjee,
“Enhancing speculative execution with selective approximate computing”, ACM Trans. Des. Autom. Electron.
Syst., vol. 24, no. 2, 26:1–26:29, Feb. 2019, issn: 1084-4309. doi: 10.1145/3307651. [Online]. Available:
http://doi.acm.org/10.1145/3307651.

https://doi.org/10.1145/3307651
http://doi.acm.org/10.1145/3307651

Chapter 5. Improving Runtime Efficiency of Programs using Approximate Computing 80

5.1 Introduction

Speculative execution is an optimization technique used in modern processors by which
predicted instructions are executed in advance with an objective of overlapping the latencies
of slow operations. Branch prediction and load value speculation are examples of speculative
execution used inmodern pipelined processors to avoid execution stalls discussed inChapter 2,
Section 2.3. However, speculative execution incurs a performance penalty as an execution roll-
back, when there is a misprediction. In this chapter, we propose to aid speculative execution
with approximate computing by relaxing the execution roll-back penalty associated with a
misprediction. Building on the foundation of the previous chapters, we present a sensitivity
analysis method for data and branches in a program in order to identify the ones which can
be executed without any roll-back in the pipeline and yet can ensure a certain user-specified
quality of service of the application with a probabilistic reliability. Our analysis is based on
statistical methods similar to the one proposed in Chapter 3 and 4. We also present a study
of the cumulative effect of approximation in program branches using Bayesian analysis and
program data using the multiple hypothesis testing method. We then perform an architectural
simulation of our proposed approximate execution method and report the benefits in terms of
CPU cycles and energy utilization on selected applications from the AxBench, Accept, and
Parsec 3.0 benchmarks suite.

Processors today employ deep instruction pipelines [88] in order to implement instruction
level parallelism. However, branch and load instructions pose challenges in a pipelined
execution. Branch instructions introduce a stall since the next instruction to be executed in
the pipeline is known only after the evaluation of the branch condition. Load instructions
introduce a stall due to access time latency of the primary memory (also known as the
memory wall [89]). Speculative execution is an optimization technique used in modern
processors to mitigate a pipeline stall by executing the likely next instructions beforehand
[90]–[96]. Branch prediction [94]–[96] and load value speculation [92], [93] are examples
of speculative execution. Branch predictors speculate the next instruction to be pipelined in
the fetch stage of a pipeline to avoid delay, while a load value predictor speculates a load
value and allows the processor to continue execution with the speculated value when there
is a miss in the data cache. However, speculative execution incurs a performance penalty
due to pipeline flushing and re-loading, when there is a misprediction of the branch or the
load value for a data. In this work, we propose to embrace approximate computing to relax
the penalty associated with speculative execution. The main highlight of our proposal is to
automatically identify the misprediction tolerant branches and data in a program. We term
a data / branch as misprediction tolerant given that in the event of a data value / branch
misprediction during speculative execution, the usual process of execution roll-back can be

Chapter 5. Improving Runtime Efficiency of Programs using Approximate Computing 81

relaxed on these selected load / branch instructions and yet, it can be asserted with a certain
probability that the application will produce an acceptable Quality of Service (QoS). We
propose to execute these instructions on the speculated path to completion (in case of a
branch) and with the speculated data value (in case of a load), with a no rollback policy, even
if they encounter a misprediction.

The application specific QoS metrics are also natural and commonly used in the approximate
computing literature. In our proposed technique of enhancing speculative execution, the same
common QoSmetrics as in the previous chapters are considered to evaluate our selective roll-
back speculative execution strategy. The intrinsic tolerance towards approximate computing
that these applications exhibit, as acknowledged in already published literature, is what we
leverage on tomake speculative executionmore effective for these. No additional user-defined
metric is needed to adopt our proposal, the already defined and standardized metrics in the
respective application domains, that have been considered as good candidates for approximate
computing, can simply be used to compare the quality of results and the performance benefits
achieved.

Our contributions in this chapter are as follows:

• We formalize the notion of mis-prediction tolerant data / branches in a program, and
setup a bridge with our concepts presented in the earlier chapters.

• A dynamic analysis driven automated method for identification of mis-prediction tol-
erant data and branches in a program is proposed. Our analysis is based on a statistical
method [4], [79] that can be applied on a program, to derive with a probabilistic
certainty that the user-defined acceptable QoS will be met even when misprediction
penalty is relaxed in one of the tolerant data / branches in the program.

• We propose approximate ISA extensions of a processor for load and branch instructions
to execute the exact and the approximate version of the instruction. The sensitivity
inference can be passed on to a compiler to transform the program by replacing the
relevant load and branch instructions by their approximable counterparts, such as
〈load.approx〉 and 〈br .approx〉.

• We show an application of the proposed sensitivity analysis in enhancing speculative
execution of pipelined processors by selectively allowing rollback-free execution in the
event of a mis-prediction. A pipelined execution continues on the speculated execution
path till completion for fault tolerant data loads and branches identified above, however,
works as usual for the intolerant ones.

• A detailed hardware implementation of the proposed selective rollback-free pipelined
execution is presented.

Chapter 5. Improving Runtime Efficiency of Programs using Approximate Computing 82

5.2 Methodology

The main kernel of our proposal is a sensitivity analysis step for determining which load
and branch instructions are approximable. The sensitivity analysis phase identifies the
misprediction tolerant instructions in a program. It is performed once per application per QoS
definition off-line. We denote this as pre-execution analysis, which involves the following
three main steps:

• First, we find a candidate set of data loads and branches in a program to perform
our sensitivity analysis. We select the data in the code regions with heavy data-
cache miss rate. Similarly, we select the branches in the code regions with high
branch misprediction rate. Such a selection is done with the expectation of having
considerable energy and performance benefits with our misprediction penalty free
execution. Cache-miss and branch misprediction heavy code regions are identified
using profiling on representative inputs.

• Second, we systematically analyze the sensitivity of the program’s QoS with respect
to faults in the selected load and branch instructions in the program. The program’s
QoS is measured in terms of the user-specified QoS metric for the application. If
the program’s QoS stays within the user-specified QoS degradation tolerance, in the
presence of faults in a data or a branch direction, we consider that a load-value or a
branch misprediction penalty in the pipelined processor can be safely relaxed for such
data or branch instructions.

• Third, the program is transformed by replacing the misprediction tolerant load and
branch instructions with their corresponding approximable counterparts. This trans-
formed program is an approximate version of the original one which can be executed in
a pipelined processor which relaxes the penalty of load-value and branch misprediction
of approximable loads and branches selectively.

We perform an architectural simulation of our scheme to present the corresponding benefit
in terms of reduced energy and CPU cycles in comparison to an exact execution, on the
architectural simulator Sniper [97].

An evaluation of our sensitivity analysis on 9 approximate computing benchmark applica-
tions shows a maximum of 36% of the tested data and 59% of the tested branches to be
approximable. Architectural simulation of our proposed rollback-free execution on the ap-
proximable loads and branches show a maximum of 72% reduction in CPU cycles and energy
consumption on the Bodytrack application from PARSEC 3.0 [98]. On an average, we report

Chapter 5. Improving Runtime Efficiency of Programs using Approximate Computing 83

23% reduction in CPU cycles and energy consumption on the architectural simulation of the
nine benchmark applications.

5.3 Motivating Example

In this section, we present an overview of our work using the x264 and Sobel applications from
the ACCEPT benchmark [99], a popular benchmark suite used in approximate computing
research. We will first discuss a motivating example for a load, followed by an example for a
branch instruction.

5.3.1 Load Instruction

A code snippet of x264, an application for encoding video streams into H.264/MPEG-4 AVC
format is shown in Fig. 5.1. A cache profiling of the code shows 4.78% average L1 data cache
miss for a test input set. The annotations in the snippet are around statementswhere the profiler
detects a substantial cache miss. There are 14 data load instructions within the annotated
snippet of code shown in the figure. These load instructions are considered as candidates
for sensitivity analysis. We systematically analyze the sensitivity of the application’s QoS
with respect to faults in the load data of the candidate instructions using techniques similar
to the ones discussed in the previous chapter. For x264 and Sobel in particular, we consider
Structural Similarity Index (SSIM) as the metric in order to measure the QoS degradation
in the presence of approximations in data and branches. SSIM is a metric used to measure
the noise in an image with respect to a reference image [100]. Since x264 and Sobel
produce images, SSIM is a natural choice for QoS evaluation. The sensitivity analysis also
needs an acceptable threshold on the QoS degradation of an application in the presence of
approximations. As discussed earlier, we term an application data as approximable if we
know that an execution of the application with a faulty / inexact value in the data is not going
to distort the application’s QoS beyond the acceptable threshold of QoS degradation. We
formalize the concept of approximability in the subsequent discussion.

Line No Inst. Addr. Assembly Code D1 Miss (in %)
9 0x43cf97 movzbl (%r14,%rbx,2),%eax 3.21
9 0x43cfa2 movzbl 0x2(%r14,%rbx,2),%eax 1.15
9 0x43cf77 movzbl (%r15,%rbx,2),%edi 0.68

Table 5.1: A subset of load instructions from the annotated segment in x264 and the
corresponding D1 cache miss percentage on a test input.

Chapter 5. Improving Runtime Efficiency of Programs using Approximate Computing 84

1 s t a t i c vo id mc_chroma (. .) {
2 . . .
3 f o r (i n t y = 0 ; y < i _ h e i g h t ; y++)
4 {
5 f o r (i n t x = 0 ; x < i _w i d t h ; x++)
6 {
7 / / @cache miss heavy
8

9 d s t u [x] = (cA∗ s r c [2∗ x]+cB∗ s r c [2∗ x+2]+cC∗ s r c p [2∗ x]+cD∗ s r c p [2∗ x
+2]+32) >>6;

10 d s t v [x] = (cA∗ s r c [2∗ x+1]+cB∗ s r c [2∗ x+3]+cC∗ s r c p [2∗ x+1]+cD∗ s r c p [2∗
x +3]+32) >>6;

11 / / @end
12 }
13 }
14 . . .
15 }

Figure 5.1: Code snippet of x264

Our analysis based on statistical methods identifies 9 out of the 14 load instructions as
approximable, i.e., fault tolerant. Quantitatively, it means that faulty data values in one
of these 9 load instructions will not distort the QoS of x264 beyond a threshold of 0.8
Structural Similarity Index, with a probability of at least 0.5. The acceptable threshold of
QoS degradation (SSIM of ≥ 0.8 in this example) and the confidence of inference (probability
≥ 0.5) are user tunable in our method.

Table 5.1 shows the first 3 instructions from the annotated segment ranked by the D1 cache
miss rate. In the table, the 1st column shows the line number in the source code, the 2nd col-
umn shows the instruction address in hexadecimal, the 3rd column shows the corresponding
assembly instruction and the 4th column shows the percentage of D1 cache miss in the in-
struction. Instructions with addresses 0x43cf97 and 0x43cfa2 are classified as approximable
whereas the instruction 0x43cf77 is classified as non-approximable by our analysis. 0x43cf97
and 0x43cfa2 correspond to statements srcp[2*x] and srcp[2*x+2] in line 8 respectively.
Note that these approximable load instructions correspond to loading elements of the data
srcp and not the loading of data x. Using sensitivity analysis, we deduce that any approximate
load value of srcp can be used in the statements srcp[2*x] and srcp[2*x+2] in the event of
a cache miss on their load data and yet have an assurance that the application QoS will not
be distorted beyond the user-defined threshold, with a user-defined confidence. We use this
knowledge to allow an execution in the pipeline to continue with a mispredicted load value, in
the event of a cache miss on the load data. As a result, the delay associated with fetching the
data from primary memory to cache memory can be avoided. However, we perform the usual
process of pipeline flushing and reloading, when a load value misprediction is detected on

Chapter 5. Improving Runtime Efficiency of Programs using Approximate Computing 85

data src in src[2*x] in line 8, since it corresponds to the non-approximable load instruction
0x43cf77.

5.3.2 Branch Instruction

We now provide an overview of our work on program branches using a code fragment from
the Sobel application [101] from the ACCEPT benchmark suite [99], shown in Fig. 5.2. This
fragment of the code contains branches with considerable branch mispredictions, in other
words, branches which are hard to predict, on a test input set. Table 5.2 shows the 3 branch
instructions from the code snippet ranked by percentage of branch misprediction reported
from a profiler on a test input.

1 / / s o b e l . c
2 vo id s o b e l _ f i l t e r i n g () {
3 . . .
4 p i x e l _ v a l u e = 0 . 0 ;
5 f o r (j = −1; j <= 1 ; j ++) {
6 f o r (i = −1; i <= 1 ; i ++) {
7 p i x e l _ v a l u e += we igh t [j + 1] [i + 1] ∗ (image1 [y + j] [x + i]) ;
8 }
9 }

10 . . .
11 f o r (j = −1; j <= 1 ; j ++) {
12 f o r (i = −1; i <= 1 ; i ++) {
13 p i x e l _ v a l u e _ a p p += we igh t [j + 1] [i + 1] ∗ image1 [ya + j] [xa + i

] ;
14 }
15 }
16 p i x e l _ v a l u e _ a p p = MAX_BRIGHTNESS ∗ (p i x e l _ v a l u e _ a p p − min) / (max

− min) ;
17 image2 [ya] [xa] = (un s i gned cha r) p i x e l _ v a l u e _ a p p ;
18 . . .
19 }

Figure 5.2: Code snippet of Sobel

Line No Inst. Addr. Assembly Code Mispredictions (in %)
12 0x40158d jne 401557 37.4
5 0x40159c jne 401540 12.5
11 0x401714 jne 4016b8 12.4

Table 5.2: Branch instructions and the corresponding percentage branch mispredictions in
Sobel on a test input

Chapter 5. Improving Runtime Efficiency of Programs using Approximate Computing 86

The 1st column shows the corresponding line number in the source code, the 2nd column
shows the instruction address in hexadecimal, the 3rd column shows the corresponding
assembly instruction and the 4th column shows the percentage of branch mispredictions
contributed by the instruction. For example, the instructions with addresses 0x401714 and
0x40158d in the table correspond to the branches on condition (j ≤ 1) and (i ≤ 1) in lines
11 and 12 respectively in the source code. We systematically analyze the sensitivity of the
application’s QoS with respect to faults in the direction of these branch instructions. The
analysis is performed by defining an SSIM of (≥ 0.8) as the acceptable degradation in QoS.
A fault in a branch direction is the resulting execution of the application when the branch
direction is alternated. Roughly speaking, we term a branch as approximable if we know
that an execution of the application with a faulty direction for the branch is not going to
distort the application’s QoS beyond the acceptable threshold of QoS degradation. In the
Sobel example, we observe that the branch having the address 0x40159c corresponding to
(j ≤ 1) in line 5 in the source is classified as approximable by our analysis. Essentially, the
program behavior is not affected beyond the allowable QoS distortion threshold regardless of
the branch being taken or not taken in the for loop, and therefore renders it to be misprediction
tolerant. Note that this branching code is not discarded by the compiler even with the highest
optimization level -O3 in GCC, since the compiler cannot statically deduce that one out of
the two sides of the branch is dead. This shows that there can be fault tolerant branches in
a program which compiler optimization techniques cannot detect and discard. Having the
sensitivity knowledge about the branches in an application, a branch misprediction on the
tolerant branches can be ignored to continue along an incorrect program path, saving energy
and improving performance as a result of no execution rollback.

5.4 Overall Approach

In brief, our sensitivity analysis is based on a perturb and observe strategy which is similar
to the one described in Chapter 3. Faults are injected in the load value/branch direction
of the load/branch instruction under test and the resulting effect on the application’s QoS
is observed. Each such fault injection experiment is interpreted as a Binomial trial [81] as
earlier with either a success or a failure outcome, given that the resulting QoS distortion of the
application remains acceptable or not respectively. After performing the necessary number
of Binomial trials, the sensitivity of a load / branch instruction is determined. For example,
our sensitivity analysis performs 115 fault injection trials on the load instruction with address
0x43cf97 in x264, and finds the result of all to be success, in order to infer that the instruction is
approximable with a confidence probability of at least 0.5. The number of trials necessary to
make an inference with a certain probability is governed by the statistical inference algorithm

Chapter 5. Improving Runtime Efficiency of Programs using Approximate Computing 87

as in the earlier chapters. An architectural simulation of misprediction penalty free execution
by continuing with any speculative data value on these approximable loads in x264 shows
nearly 2% reduction in CPU cycles and energy consumption. Similarly, our method of
sensitivity analysis performs 151 fault injection experiments on the branch instruction with
address 0x40158d in Sobel, and finds 18 with an outcome of success and 133 with an outcome
of failure to infer that the instruction is non-approximable. An architectural simulation of
roll-back free execution on the event of a branch misprediction on the approximable branches
in Sobel shows nearly 23% reduction in CPU cycles and energy consumption.

5.5 Sensitivity Analysis by Hypothesis Testing

The sensitivity analysis method is similar to the one proposed in Chapter 3. However, the
fault models are adapted to loads and branches. We consider two types of fault experiments,
one on program data and the other on program branches respectively. We define the two
types of fault injection experiments on a given program P as follows:

Data-Fault Injection Experiment: Let D be the set of program data. Let E be the set
of all possible executions of a program P. Given an execution e ∈ E and a program data
v ∈ D, let 〈ve, `〉 denote the value of v at program point ` in P during the execution e.
We term this value as the exact value of v at location ` of P with respect to the execution
e. Evidently, there could be multiple locations and therefore multiple 〈ve, `〉 values for the
execution e. Let the set of program locations where v occurs in an execution e be denoted
as `e

v . Let 〈vapprox, `〉 , 〈ve, `〉 denote any value of v at location ` ∈ `e
v . We term this as a

candidate approximate value of v at location ` in P with respect to the execution e. Here,
vapprox models a mispredicted load / store value at a load / store instruction at location `. A
data-fault injection experiment of P is the resulting execution when 〈ve, `〉 is replaced with
a candidate approximate value 〈vapprox, `〉.

Example 5.1 We consider a JPEG Encoder application 3.2 to describe our methodology.
Figure 5.3 shows an overview of our fault injection experiment. In the code snippet shown
in the figure, the arrow pointed line (z = y + x) is the statement of our interest for sensitivity
analysis, labeled as the target load. The statement is broken down into ISA instructions,
i.e., load x into register r1, load y into register r2, perform an arithmetic add operation and
finally store the result in the variable z. Let us consider a single load instruction for analysis.
In this example, we consider the instruction that loads x into register r1 (load r1, x). Our
fault model injects an erroneous data into register r1. For instance, if the precise value of
r1 after executing the load instruction should have been 60 (say) for some input, the fault
model injects a random value say 1452 into the register r1. The results of the exact execution

Chapter 5. Improving Runtime Efficiency of Programs using Approximate Computing 88

Random Experiment Pass

Fail

Target load Instruction

Random Experiment

Random Experiment Pass

P

P’

I Fault Injection

Transformed

QoS Metric

QoS Metric

O

O’

|s-s’| <

s

s’

Pass/Fail

double x=y+1

x=z+10

z=y+x

double x=random()

z=y+x

Sample

double x=y+1

x=z+10

z = y+ random()

Target load

Target load Instruction

Target load Instruction

Figure 5.3: Our methodology of fault injection on an image processing application

and the fault injected execution are then compared using the QoS metric of the application.
When the difference in QoS is within an acceptable tolerance ε , the experiment is marked as
Pass. Otherwise, it is marked as Fail. �

Branch-Fault Injection Experiment : Let B be the set of program branches and E be the
set of all possible executions of a program P. Let e ∈ E be an execution and b ∈ B be
a branch at line ` of the program. When b is along the execution path of e, let be denote
the branch direction (0 or 1) during the execution. A branch-fault injection experiment is
the resulting execution e′ when be is changed to (1 − be). Essentially, such an experiment
captures the effect of an execution along a wrong path due to a branch misprediction.

Figure 5.4: A fault injected path shorter than the correct path

Figure 5.4 shows pictorially a fault injection experiment on a program. After a fault injection,
the program path may deviate from the correct path (shown as a bold line) and produce an
incorrect path to completion (shown as a dashed line). If the new execution path produces
an output with an acceptable error, the fault injection experiment provides an evidence for
the hypothesis. The figure also depicts that the new incorrect path after a fault injection may
result in a shorter path to completion, i.e., a path that terminates in a shorter time with respect

Chapter 5. Improving Runtime Efficiency of Programs using Approximate Computing 89

to the exact path. This may happen due to fewer or less expensive instructions or both, on the
incorrect path. �

Example 5.2 Figure 5.5 shows an overview of the branch-fault experiment methodology.
Consider a basic block with a branch instruction labeled as target branch in the figure. The
Green color blocks (A-B-D-H) show the exact path of a program for some input. Our branch-
fault injection model flips the direction of the branch in block A. After the fault injection,
the program path changes to A, C, E and H shown in Red. The result of exact execution and
the execution with branch-fault at the target branch is then compared to determine the QoS
degradation. When the degradation is within the tolerance ε , the experiment is marked as
Pass. Otherwise, it is marked as Fail. �

Random Experiment Pass

Fail

Target branch instruction

Random Experiment

Random Experiment Pass

P

P’

I Fault Injection

Injects at runtime

QoS Metric

QoS Metric

O

O’

|s-s’| <

s

s’

Pass/Fail

Sample

Target Branch

Target branch instruction

Target branch instruction

A

CB

D

H

E

A

CB

D

H

E

Figure 5.5: Experiment methodology of a random experiment using branch-fault injection
experiment on an image processing application

We now recall the definition of a sample space of a statistical experiment [102]:

Definition 5.1 The sample space of a statistical experiment is a pair (Ω,S), where

1. Ω is the set of all possible outcomes of the experiment.

2. S is the set of all subsets of Ω.

Any set A ∈ S is known as an event. If the outcome of an experiment happens to be an
element of A, then we say that an event A has occurred. �

With respect to the sensitivity analysis of data / branch instructions, we consider the following
sample space:

Ω = {Xi = xi | xi ∈ {0, 1}, 1 ≤ i ≤ k, k ≥ 0} (5.1)

Chapter 5. Improving Runtime Efficiency of Programs using Approximate Computing 90

Xi is a random variable associated with the ith sample and xi is the outcome. A data / branch
fault experimentwhich is a pass is representedwith xi = 1. A fault injection experimentwhich
is a fail is represented with xi = 0. Essentially, Ω represents the set of all possible outcomes
of a sequence of k data/branch fault injection experiments in data / branch instructions of a
program, for different program inputs. The notion of an approximable program data with
respect to a user-defined Quality of Service (QoS) is formally defined as follows [67].

Definition 5.2 Approximable Data: Given a confidence of inference θ and an application’s
allowable QoS distortion limit α, a program data v ∈ D is called approximable if and only
if ∀e ∈ E (the set of all executions), the probability that the program output remains within
the acceptable QoS limit α on a data fault at v is at least θ. Formally, the definition is:

AD =
{
v ∈ D | ∀e ∈ E, ∀` ∈ `e

v, 〈ve, `〉 → 〈vapprox, `〉 =⇒ Pr(R ∈ QoSα) ≥ θ
}

(5.2)

whereAD denotes the set of approximable program data and 〈ve, `〉 → 〈vapprox, `〉 denotes
the substitution of 〈vapprox, `〉 in place of 〈ve, `〉. R denotes the program output. Pr(R ∈
QoSα) denotes the probability that the data-fault injection keeps the program output within
the acceptable QoS limit α and it is the same as Pr(Xi = 1), for any i. �

On a similar note, we deem a branch as approximable when an incorrect direction of execution
from that branch does not affect the output of the application beyond an acceptable error limit.
Previous work has shown the existence of such branches in various applications, in both the
scenarios when an approximation is permitted [56] and when no approximation is permitted
[103]. We define an approximable branch as follows:

Definition 5.3 ApproximableBranch: Given a confidence of inference θ and an application
allowable QoS distortion limit α, a branch b ∈ B is approximable if and only if ∀e ∈ E , the
probability that the program output remains within the acceptable QoS limit α upon a branch
fault on b, is at least θ. Formally, the definition is:

AB =
{
b ∈ B | ∀e ∈ E, be → (1 − be) =⇒ Pr(R ∈ QoSα) ≥ θ

}
(5.3)

where AB denotes the set of approximable program branches and be → (1 − be) denotes
changing the branch direction of b corresponding to the execution e, to the alternate direction.

Now that we have defined an approximable load and branch in a program, we resort to our
technique of automatically identifying them. In a manner similar to our idea presented in
Chapter 3, we propose statistical hypotheses on the approximability of data and branches and
test them with a testing procedure, particularly using the method of Sequential Probability

Chapter 5. Improving Runtime Efficiency of Programs using Approximate Computing 91

Ratio Testing (SPRT). The details of hypothesis testing can be found in Section 3.3.3 and the
details of SPRT can be found in Section 3.3.4.

5.6 Cumulative Sensitivity Analysis using Bayesian Net-
works

The sensitivity knowledge of program data and branches given by the analysis discussed in
the previous section provides us the effect of having an approximation at a particular data or a
branch of a program at a time, during an execution. The cumulative effect of approximations
in multiple data and branches cannot be obtained from the analysis. In this section, we present
a study of the cumulative effect of approximation of program data and branches. We now
propose to study the following:

• The cumulative effect of approximations in multiple data and

• The cumulative effect of approximations in multiple branches.

We first define the notion of jointly approximable data in a program P:

Definition 5.4 Jointly Approximable Data: Given a confidence of inference θ and an ap-
plication allowable QoS distortion limit α, a set of program data D = {d1, d2, . . . , dn} is
jointly approximable if and only if ∀e ∈ E (E is the set of all executions), the probability
that the program output remains within the acceptable QoS limit α when there are data-fault
injections in all d ∈ D simultaneously, is at least θ. �

The concept of Jointly approximable branches in a program is similarly defined as follows:

Definition 5.5 Jointly Approximable Branches: Given a confidence of inference θ and an
application allowable QoS distortion limit α, a set of program branches B = {b1, b2, . . . , bn}

is jointly approximable if and only if ∀e ∈ E , the probability that the program output remains
within the acceptable QoS limit α when there are branch-fault injections simultaneously in
all b ∈ B, is at least θ. �

A simple method to infer the jointly approximable data and branches is by extending the
hypothesis testing based analysis discussed in the previous section on multiple data and
branches. The sample space will be similar to Eqn. 5.1, with the difference that Xi is now
a random variable to represent the outcome of the ith fault injection experiment in all data
d ∈ D / all branches b ∈ B simultaneously. We then test: H0 : Pr(Xi = 1) ≥ θ and
H′0 : Pr(Xi = 1) < θ. Acceptance of the null hypothesis (H0) implies that the set of dataD or
the set of branches B is jointly approximable. However, note that there can be an exponential

Chapter 5. Improving Runtime Efficiency of Programs using Approximate Computing 92

number of possible queries on joint approximability of data / branches. Hypothesis testing
to answer each such query is prohibitively expensive. To address this problem, we propose a
method for inference of jointly approximable branches using Bayesian networks [104].

5.6.1 Bayesian Networks

Queries on jointly approximable data and branches can be answered with the full joint
probability distribution. The full joint distribution for n Boolean variables essentially is a
table containing 2n rows and the corresponding probability that the events in the row jointly
occur. Bayesian networks can concisely represent the full joint probability distribution. It
is a data structure to represent dependencies among the random variables of the domain of
interest, where random variables represent the events in the domain.

A formal definition of a Bayesian network is given below:

Definition 5.6 ABayesian network (BN) is a structureD = (G(V, E),X, parents, Ci), where

• G(V, E) is a directed acyclic graph with the set of verticesV as the random variables
X.

• X is the set of random variables, representing the events of interest.

• parents : X → 2X maps a random variable Xi to its parents. A node X j is said to be
a parent of a node Xi if there is a directed edge from X j to Xi in G.

• Ci is the conditional probability table (CPT) associated with every variable Xi ∈ X

specifying the probabilities Pr(Xi | parents(Xi)).

where parents(Xi) denotes parents of Xi. �

In the context of this work, the domain of interest is a program. Given a program P, the
sample space is the set of all data and branch fault injection experiments E of P.

Given a data fault injection experiment e ∈ E , we say that e is an evidence of the event
represented by the random variable X if and only if the outcome of the experiment is a
success. Similarly, as an outcome of branch sensitivity analysis, we say that a branch fault
injection experiment is an evidence of the event represented by the random variable B if
and only if the outcome of the experiment is a success. Therefore, given an experiment e, a
random variable X takes the value success (1) or f ailure (0). In this setting, every random
variable is Boolean. Given a Bayesian network (BN), the probability that events X1 = x1,
X2 = x2, . . . , Xn = xn jointly occur is given by [104]:

Chapter 5. Improving Runtime Efficiency of Programs using Approximate Computing 93

Figure 5.6: A Bayesian network with three nodes

Pr(x1, x2, . . . , xn) =

n∏
i=1

Pr(xi | parents(Xi)) (5.4)

where xi denotes the value of the variable Xi and can be either true or f alse. Parents(Xi)
denotes the values of parents(Xi) that appear in x1, x2, . . . , xn. The product terms on the right
hand side can be obtained from the CPT entries of the BN. �

Example 5.3 We first discuss our proposal on constructing the CPTs of a BN for sensitivity
analysis. For simplicity of illustration, we consider a BN with three random variables X , Y

and Z such that Z has X and Y as its parents. This BN is shown in Fig. 5.6 along with the
CPT at each of the nodes. The CPT at the nodes X and Y contains only the entries for Pr(X)

and Pr(Y). The CPT of the node Z contains the value of Pr(Z) for all possible values of its
parents X , Y , as shown in Figure 5.6. �

Our method for constructing the CPT is a Monte Carlo method, based on random sampling
of the program under analysis [105]. Consider S random samples, let SX and SY be the set
of samples out of S, which are an evidence of the events represented by random variables
X and Y respectively. We denote the cardinality of a set S by

�� S
��. Then, Pr(X) and

Pr(Y) corresponding to the nodes X and Y in Fig. 5.6, are given by α =
��SX ����S�� and β =

��SY ����S��
respectively. In the figure, the last column of the CPT corresponding to the node Z shows
(Pr(Z)|X,Y). For example, (Pr(Z)|X = true,Y = true) is denoted by θ4 in the CPT of node
Z . In order to compute θ4, we count the number of samples which are an evidence of the
events when X is True and whenY is True, out of the S samples. Let us denote this by SX∩Y .
We consider these SX∩Y samples and see how many of these are an evidence of the event

represented by the variable Z , let us denote this by SZ∩X∩Y . We then compute θ4 =

��SZ∩X∩Y ����SX∩Y �� ,
using the following relation: Pr(A|B) = Pr(A∩B)

Pr(B) . Similarly, we compute θ1 =

��SZ∩X∩Y ����SX∩Y �� ,

Chapter 5. Improving Runtime Efficiency of Programs using Approximate Computing 94

θ2 =

��SZ∩X∩Y ����SX∩Y �� and θ3 =

��SZ∩X∩Y ����SX∩Y �� .
The precision of the computed CPTs depends on the number of samples considered, as with
any Monte-Carlo method. Based on this approach, we present Algorithm 5.1 to generate the
CPTs at the nodes of a general BN, obtained from a program. In the algorithm, S denotes
the set of random samples considered in the generation, and G represents the directed acyclic
graph of the Bayesian network.

Algorithm 5.1 CPT generation by random sampling
1: procedure Generate-CPT(G, S)
2: for each node X of G do
3: SX ← subset of S satisfying X
4: SX ← S − SX
5: end for
6: for each node X of G do
7: X1, X2, . . . , Xk = parents(X)
8: for each enumeration e of X1, X2, . . . , Xk do
9: for i = 1 to k do

10: if Xi = true in e then
11: Si = SXi

12: else
13: Si = SXi

14: end if
15: end for
16: Pr(X |e) =

��(⋂k
i=i Si)∩SX

����⋂k
i=i Si

��
17: end for
18: end for
19: end procedure

5.6.2 The Bayesian Network Structure

A Bayesian network models the conditional dependency between the events via the directed
edges. We consider to use the acyclic data dependency graph of a program to reason about
joint sensitivity of program data and the dominator tree of a program to reason about the
joint sensitivity of program branches. This choice is based on the observation that the data-
dependency graph and the dominator tree of a program intrinsically capture the conditional
dependency between the program data and branches respectively [106]. We now elaborate
our methodology using a dominator tree. In a dominator tree, the program branches are taken
as nodes of the tree and there is an edge from a branch node b1 to a branch node b2 if and only
if b1 is an immediate dominator of b2. We define the dominator and immediate dominator
relations between program branches as follows:

Chapter 5. Improving Runtime Efficiency of Programs using Approximate Computing 95

Definition 5.7 Given program branches b1 and b2, we say that b1 dominates b2 if and only
if all program paths to b2 in the CFG of the program pass via b1. Branch b1 is said to be
an immediate dominator of branch b2 if and only if b1 dominates b2 and every branch b that
dominates b2 also dominates b1. �

427f36

427f6b

427fa2

427fa7

427fda

428337

427fdf

428012

428019

42804a

4280bb

428130

42816b

4281a8

427f36

427f6b

427fa7 427fdf 428019 4280bb

428130

42816b

4281a8

Figure 5.7: The CFG and the Dominator tree consisting of the approximable branches of a
code snippet from JPEG encoder

Example 5.4 As an example, consider a CFG and the corresponding dominator tree of a code
snippet from the build_huffman method in the JPEG Encoder application shown in Fig. 5.7.
The nodes shown in gray are the ones identified as approximable by our analysis, whereas the
nodes shown in white are the ones which are found to be intolerant to approximation, given
a permissible QoS distortion and a confidence measure. �

We are interested in probing the joint probability distribution of only those program branches
which are known to be approximable individually. This is because the answer to a query

Chapter 5. Improving Runtime Efficiency of Programs using Approximate Computing 96

for deriving the probability of a set of branches being jointly approximable which contains
a sensitive branch is going to be trivially 0. We obtain the sensitivity knowledge of the
individual nodes using the hypothesis testing procedure discussed earlier.

Figure 5.8 shows the essence of the discussion on constructing a Bayesian network from
a program. First, the CFG is extracted from the program to be analyzed. The results of
sensitivity analysis by hypothesis testing of the candidate branches in the program are taken
to trim the nodes of the CFG corresponding to the sensitive branches. Then, a dominator tree
is constructed from the trimmed CFG and taken as the Bayesian network structure, for branch
sensitivity analysis. Finally, the CPT at each node is obtained using the proposed sampling
based algorithm in Algorithm 5.1.

Program CFG Dominator Tree

Bayesian Network

Sensitivity Analysis

CPT Gen by
 Monte Carlo
executions

Figure 5.8: A block diagram depicting the construction of a Bayesian network from a
program.

The performance of the Bayesian analysis depends on (1) the number of random executions
and (2) the size of the Bayesian network and (3) the time to complete a fault injection
experiment. (1) can be tuned for the desired precision. Let k be the number of nodes in the
directed acyclic graph of the Bayesian network, S be the number of fault injection experiments
(random samples) and te be the average time of completing a fault injection experiment, d

be the maximum degree of the graph. The performance of the CPT generation algorithm is
O(k ∗ 2d) + O(S ∗ k ∗ te). The time to complete the k fault injection experiments (samples)
at each data / branch node of the graph takes O(S ∗ k ∗ te) time. The time taken to compute
the CPT entries at each node takes O(k ∗ 2d) time.

5.7 Implementation

In this section, we discuss our methodology to use the approximable loads and branches to
improve runtime performance of programs. A schematic of our work is shown in Figure 5.9.
It consists of two main steps, the pre-execution analysis and an architectural simulation. The
pre-execution phase identifies approximable load / branch instructions and the architectural
simulation phase simulates rollback-free execution of a load / branch instruction. For ap-
proximable load instructions, the load value is not fetched from the next level memory in the
event of a D1 cache miss in the first level data cache, instead, an approximate value in the
register is used, without causing a pipeline stall. No load value verification and no rollback is

Chapter 5. Improving Runtime Efficiency of Programs using Approximate Computing 97

associated with such instructions. Similarly, no pipeline flush and reload is performed when
a misprediction is detected in an approximable branch. We implement the misprediction
penalty free execution scheme in the Sniper architectural simulator [97].

Candidate Ld/Br
for sensitivity

analysis

Candidate annotation

Sensitivity
Analysis

QoS metric QoS Tol.

Program
transformation

Approx
Ld/Br

Load Reg<id>, MEMORY<address>

Load.approx Reg<id>, MEMORY<address>

transform

Br <address>

Br.approx <address>

transform

Program transformation for approx
Ld/Br

PRE-EXECUTION
 ANALYSIS

EXE EXE
D1 miss/Branch
 Miss-Prediction

ARCHITECTURAL
SIMULATION

Continue with approx
value/branch

CPU

Source code

Profiling

Figure 5.9: A schematic of the implementation

5.7.1 Pre-execution analysis

As mentioned earlier, the pre-execution analysis in the figure consists of three main steps,
namelyCandidate annotation for sensitivity analysis, sensitivity analysis, and program trans-
formation.

Candidate annotation for sensitivity analysis: This step uses tools to identify the candidate
instructions for sensitivity analysis. Cache-miss heavy load instructions are identified by
cache profiling using Cachegrind [107]. Hard to predict branches are identified by collecting
misprediction statistics using the Pin tool [34] implementing the two bit saturating counter
branch predictor [108]. Instructions which show high cache miss and branch misprediction
rate are considered as candidates for approximation. In the case of load instructions, we select
the ones for sensitivity analysis that have at least 100 cache misses. For branch instructions,
the sensitivity analysis is carried out similarly for those instructions that have at least 100
mispredictions.

Sensitivity analysis: We perform fault injection experiments of the SPRT routine using
binary instrumentation, implemented on top of the Pin tool [34]. A fault is injected in a
load-instruction by injecting an erroneous load value in the respective register. A fault is
injected in a branch-instruction by flipping the status flags in the EFLAGS register which are
necessary to negate the outcome of the branch.

Program transformation: The set of approximable load / branch instructions are replaced
with their approximable counterparts in the program. This is an extension we propose to
add to the Instruction Set Architecture (ISA) such that the processor is able to differentiate

Chapter 5. Improving Runtime Efficiency of Programs using Approximate Computing 98

approximable instructions from the normal ones, and exercise the roll-back policy accordingly.
For instance, Load Reg <id>, MEMORY <address> is replaced with Load.approx Reg <id>,
Memory <address> and Br <address> is replaced with Br.approx <address>. In order to
pass the information to the hardware, we propose an extension to the ISA similar to [109] to
implement the idea of misprediction penalty-free execution of approximable load and branch
instructions. An additional bit is set in the opcode of a load, branch instruction to indicate to
the micro-architecture that it is approximable.

After the pre-execution analysis, an architectural simulation of the approximate program is
performed. The implementation details of the architectural simulator is discussed in the
following.

5.7.2 Architectural Simulation

In this section, we discuss the hardware implementation of our proposed approach. When a
load/branch instruction is not approximable, it executes normally. Moreover, an approximable
load executes precisely when the load address is present in the cache. The approximate
execution of the load is triggered only in the event of a cache miss on the load address, when
the pipeline proceeds with the content of the destination register as the approximate load
value. Similarly, the approximable branch instruction executes normally when no branch
misprediction is detected. In the event of a branch misprediction, the pipeline proceeds with
no flushing.

Hardware Design

Figure 5.11 shows the hardware implementation of our design using a 5-stage pipeline
architecture. We introduce two 32-bit registers - Ap_Ld_Reg and Ap_Br_Reg to store the
load and branch instruction types respectively of all the loads and branches in the pipeline.
We intend to use these registers as a FIFO (First In First Out) queue to know the load / branch
types later in the execution stage. When a new load / branch instruction is in the fetch stage
of the pipeline, the MSB of Ap_Ld_Reg/Ap_Br_Reg is set if it is approximable. In order
to have a FIFO access of the instruction types from the LSB of these registers, we perform
an appropriate number of right shift operations on the MSB bit. For example, the type of
the first load / branch instruction in the pipeline is inserted at the MSB (31st bit). We then
perform 31 right shift operations to shift the MSB to LSB (0th bit) position.

Similarly, the type of the second load / branch instruction in the pipeline is set at the MSB
and we now perform 30 right shift operations to shift the MSB to the 1st bit position and so
on. We keep an additional 16-bit register Cntr_Reg to keep the count of the load / branch
instructions in the pipeline. The 8-bits from its LSB are used to store the load instruction

Chapter 5. Improving Runtime Efficiency of Programs using Approximate Computing 99

Get Load TypeGet Branch Type

Ap_Br_Reg[MSB]= 1Ap_Br_Reg[MSB]= 0

Load/Branch

Instruction?

Approximable? Approximable?

S= Cntr_Reg[8:15] S= Cntr_Reg[0:7]

Ap_Br_Reg[MSB]>> 31-S Ap_Ld_Reg[MSB]>> 31-S

Cntr_Reg[8:15]= Cntr_Reg[8:15] + 1 Cntr_Reg[0:7]= Cntr_Reg[0:7] + 1

Ap_Ld_Reg[MSB]= 1Ap_Ld_Reg[MSB]= 0

Branch Load

No Yes No Yes

Figure 5.10: Flowchart to implement the fetch stage for a branch and a load instruction

Figure 5.11: Hardware architectural design

count and the 8-bits from its MSB are used to store the branch instruction count. When a
load / branch enters the pipeline, the corresponding Cntr_Reg value is incremented. It is
decrementedwhen the instruction exits from the pipeline. In general, if the load / branch count
in Cntr_Reg[7:0]/Cntr_Reg[15:7] is S, then (31− S) right shift operations are performed on
the MSB of Ap_Ld_Reg/Ap_Br_Reg after being set. During the execution stage of a load /
branch instruction, the LSB of Ap_Ld_Reg / Ap_Br_Reg is read to know the load / branch
type (approximable or precise). After reading, the register content is shifted one position
right to have the effect of deleting the last read value. Figure 5.10 shows the execution steps
in setting the registers and the counter in the fetch stage.

For a branch instruction, the branch predictor predicts the branch direction at the Fetch
stage. When the branch condition is later resolved at the Execution stage, the actual branch

Chapter 5. Improving Runtime Efficiency of Programs using Approximate Computing 100

direction is compared with the predicted direction as shown in the figure. The pipeline
proceeds normally when there is no mis-prediction. In the event of a mis-prediction, the
branch-type is read from the Ap_Br_Reg register to decide whether to flush the pipeline.

For a load instruction, when a cache miss occurs at theMemory stage, the load-type is read
from the Ap_Ld_Reg register. Depending on the load type, either the next level of memory
is accessed to get the exact data needed for the execution or the pipeline proceeds with the
execution using the content of the destination register (DR). Instead of a random value, we
use the content of DR for approximable load instructions. Overall, the proposed hardware
design additionally requires three comparators, two AND gates, two 32 bit registers and a 16
bit counter register.

Example 5.5 Let us consider a simple assembly code as shown in Figure 5.12 containing
2 conditional branches and 1 unconditional branch. We walk through the execution of the
branch instructions in the proposed hardware pipeline.

1 BNE loc1
2
3 CMP R0 , #0 ; check i f ro ==0
4 BNE_APPROX loc2 ; i f R0!=0 b ranch t o l o c2
5 ADD R1 ,#1 ; r1= r1 +1
6 BR nex t ; u n c o n d i t i o n a l b r anch t o nex t
7 l o c2 : ADD R2 ,#1 ; R2=R2+1
8
9 l o c1 :

10

Figure 5.12: Assembly instructions containing one approximable branch (BNE_APPROX)

• When the instructionBNE loc1 is in the fetch stage of the pipeline, we set Ap_Br_Reg[MSB] =

0 to signify that it is a non-approximable branch. 31 right shift operations are performed
in this register to shift the MSB to the LSB position.

• The Cntr_Reg[8 : 15] is then incremented by 1 to signify that one branch instruction
is present in the pipeline.

• Since this is a non-approximable branch, in the event of a misprediction of this branch
during the execution stage, the pipeline is flushed and reloaded with the content of the
correct branch.

• When the instruction exits the pipeline, the Cntr_Reg[8 : 15] register is decremented.

• For the branch instruction BNE loc1, we assume that its outcome is false and hence
the execution follows the path that goes to the next instruction outside the branch.

Chapter 5. Improving Runtime Efficiency of Programs using Approximate Computing 101

• When the branch BNE_APPROX loc2 at Line 4 is in the fetch stage of the pipeline,
the register Ap_Br_Reg[MSB] is assigned 1 since it is an approximable branch.

• The Cntr_Reg[8 : 15] is then incremented by 1.

• If this branch is mispredicted during the execution stage, since this is an approximable
branch, the execution in the pipieline proceeds as usual, causing no roll-back and
reloading of the pipeline.

• When the instruction exits the pipeline, the counter Cntr_Reg[8 : 15] is decremented.
�

5.8 Evaluation

We present an evaluation of our sensitivity analysis techniques, followed by a performance
and energy evaluation of the proposed rollback-free execution of approximable load and
branch instructions on a subset of three benchmark suites, AxBench [72], ACCEPT [99] and
Parsec 3.0 [98]. We first briefly introduce the applications considered for evaluation and the
corresponding QoS metric.

5.8.1 Applications for Evaluation

We consider JPEG-Encoder, a lossy compression algorithm, Sobel - an image processing
application for edge detection, Inversek2j - an inverse kinematics application for a 2-joint
arm and x264 - a video-stream encoder, from the AxBench suite of benchmarks [72]. In
the ACCEPT benchmark suite [99], we have Stream-cluster - an algorithm to cluster a set
of data points, and Blackscholes - an application which predicts the prices of European
stock options analytically using Black-Scholes partial differential equations. From the Parsec
3.0 benchmark suite [98], we consider the Bodytrack application. It is a computer vision
application to track the posture of a human body from a sequence of video frames. We also
evaluate on Jmeint and Raytracer mentioned in Chapter 3 Section 3.5.1.

5.8.2 QoS Metric

In Chapter 3 Section 3.5.2, we discussed some QoS metrics associated with each application
domain taken for evaluation. In addition to those metrics, we use the following in this work
to demonstrate the performance of our method.

Chapter 5. Improving Runtime Efficiency of Programs using Approximate Computing 102

Structural Similarity (SSIM): The Structural Similarity index is used for measuring the
similarity between two images. It is used to measure the noise in an image with respect to
the reference image in terms of the SSIM index. SSIM is an index valued between 0 and
1. SSIM index of 0 between two images means that they have no similarity, and an index
of 1 means that they are exactly similar. We direct the readers to [100] for details on the
computation of the SSIM index. We use this metric to compare the QoS distortion in Sobel,
Bodytrack and x264 applications. In particular, we find this to be a better metric than PSNR
for measuring the QoS distortion in images introduced due to approximation, in the Sobel
application. Some of the output images produced by Sobel, have a large perceptible noise
cause by approximation, reported an acceptable PSNR. However, they have an unacceptable
SSIM index. We use an SSIM index value of ≥ 0.8 as the acceptable threshold, which is the
standard threshold for acceptable noise in images [100].

Cluster Center Distance (CCD): It is a metric to measure the collective distance between
K pairs of vectors in the Euclidean space. We use this metric to measure the change in
the cluster centers after introducing approximation in the Stream-cluster application. The
computation of CCD is performed as:

CCD = minimize
K∑

i=1

K∑
j=1

di, j xi, j
√

n

subject to
K∑

i=1
xi, j = 1, for all j = 1 . . .K

K∑
j=1

xi, j = 1, for all i = 1 . . .K

(5.5)

where di, j is the Euclidean distance between the i-th exact cluster center and the j-th ap-
proximate cluster center, among the k pair of exact and approximate cluster centers. n is the
dimension of a cluster center.

Average Relative Error: It is a metric to measure the QoS distortion in applications that
produce an array of values as output. It is given by:

Avg_Err(X, X′) =
1
N

N∑
i=1

|Xi − X′i |
Xi

(5.6)

Chapter 5. Improving Runtime Efficiency of Programs using Approximate Computing 103

X and X′ are the reference and the approximate value respectively. N is the number of outputs.

5.8.3 Evaluation of Sensitivity Analysis by Hypothesis Testing

Application LOC QoS-metric QoS
Tol.

Load Sensitivity Branch Sensitivity
%
D1
miss

Load
Tested

Load
Appr.

%
Appr.

Time
(Hrs)

%
Mis-
pred.

Br.
Tested

Br.
Appr.

%
Appr.

Time
(Hrs)

JPEG encoder 482 PSNR ≥ 20 0.5 293 52 17.7 12 14.4 416 163 39 10.3
Stream-cluster 1465 Cluster center distance ≤ 0.1 0.7 186 45 24 5 7.5 208 112 53.8 8.5
Blackscholes 345 Average relative error ≤ 0.1 1.9 59 13 22 4 12.8 16 3 18.8 0.5

Sobel 149 SSIM ≥ 0.8 0.1 22 8 36.5 2.3 14.1 11 1 9 1
JmeInt 338 Matching 0 0.3 92 24 26 0.4 9.4 42 19 45 0.4

Bodytrack 16406 SSIM ≥ 0.8 5.7 280 27 9.6 8.6 5.4 161 84 51.1 7
x264 59982 SSIM ≥ 0.8 4.8 500 57 11.4 41 8.7 671 402 59 58

Raytracer 1006 PSNR ≥ 20 0.0 51 9 18 29 9.1 46 13 28.2 23
Inversek2j 77 Average relative error ≤ 0.1 0.76 12 0 0 2.7 5.3 11 6 54 2.4

Appr.:Approximable; %Appr. : Percentage of the approximable tested data and branches, Br. : Branches
We see that a considerable percentage of program data and branches tested are approximable.

Table 5.3: Sensitivity analysis results by hypothesis testing.

We first provide an evaluation of the proposed sensitivity analysis method for data and
branches in a program by statistical hypothesis testing. Table 5.3 shows the results of our
sensitivity analysis on programdata load and branch instructions, performedwith a confidence
probability of θ ≥ 0.5. The 1st column shows the benchmarks, the 2nd shows the number of
lines of code of each application, the 3rd column shows the metric used to measure the QoS
distortion of the respective application. The 4th column shows the tolerance of QoS distortion
in the respective application. The 5th to 9th columns show the cache miss percentage reported
by the profiler on the level 1 (L1) data cache (D1), the number of load instructions analyzed
for sensitivity, the number of load instructions identified as approximable, the percentage of
the analyzed load instructions that are found to be approximable and the time to complete the
analysis respectively. The cache configuration taken is shown in Table 5.5.

The 10th to 14th columns of Table 5.3 show the percentage of branch misprediction reported
by the profiler, the number of branches analyzed for sensitivity, the number of branches
classified as approximable, the percentage of the analyzed branches that are found to be
approximable and the total analysis time respectively. Our experimental results show that a
considerable number of data and branches in the applications are approximable when QoS
distortion in permissible limits is acceptable. Evidently, we see a maximum of 36.5% of the
tested data in the Sobel application and 59% of the tested branches in the x264 application to
be approximable, with a confidence probability of more than 0.5. This shows that there is a
considerable scope of enhancing speculative executions with both load values and branches

Chapter 5. Improving Runtime Efficiency of Programs using Approximate Computing 104

in these applications and these points of approximation can be automatically identified with
our analysis.

We observe that performing the sensitivity analysis of data and branches one at a time
using hypothesis testing is expensive, particularly in those applications which are expensive
to execute to completion. We see that in applications like x264 and Raytracer, testing the
sensitivity of 500 and 51 load instructions takes nearly 41 and 29 hours respectively. Similarly,
testing the sensitivity of 402 and 13 branches in x264 and Raytracer takes nearly 58 and 23
hours respectively.

5.8.4 Evaluation of Sensitivity Analysis Using Bayesian Networks

In the applications, we construct the Bayesian network as discussed in Section 5.6.2, function-
wise. Table 5.4 depicts the probability of a set of individually approximable branches to be
jointly approximable, in certain functions from x264, Stream-cluster, JPEG Encoder, Body-
track, Raytracer and JMEint applications. The Function column mentions the function
name and the Br column shows the number of approximable branches in the correspond-
ing function, identified using the hypothesis testing procedure. These branches essentially
constitute the nodes of the Bayesian network. The Pr. column shows the probability of
the approximable branches in the function to be jointly approximable, obtained from the
joint probability distribution represented by the Bayesian network that we construct from our
methodology discussed in Section 5.6. The Time column shows the time taken to construct
the Bayesian network in order to compute the joint probability.

We see that out of all the tested branches, a maximum of 51 branches in x264, 12 branches in
Stream-cluster, 20 branches in Bodytrack and 5 branches in Raytracer came out to be jointly
approximable with a probability of 1. In the case of Jpeg encoder and Jmeint, we found a
maximum of 11 and 14 branches to be jointly approximable with a probability of 0.93 and
0.52 respectively. These sets of branches in the applications are jointly approximable by our
definition (Definition 5.5) with a confidence of θ ≥ 0.9 and with a QoS metric, distortion
tolerance mentioned in Table 5.3. We observe that there are many potential sets of branches
in these applications which can be jointly approximated. Performance-wise, the time taken to
compute the joint probability on an application is the sum of the times taken to construct the
Bayesian network for each function. The time taken to compute the joint probability in x264,
Stream-cluster, Jpeg encoder, Bodytrack, Raytracer and Jmeint is approximately 96.93, 6.41,
3.95, 10.5, 12.4 and 0.6 hours respectively.

Chapter 5. Improving Runtime Efficiency of Programs using Approximate Computing 105

Function #Br. Pr. Time (s) Function #Br. Pr. Time (s)
x2
64

get_ref 21 0.76 80064

ST
R
EA

M
C
LU

ST
ER

__static_initialization_and_destruction_0 2 1 853
mc_chroma 4 1 3604 _M_convert_to_wmask 6 1 3148
mc_luma 13 1 8617 moneypunct<char, true>::_M_initialize_moneypunct 2 1 1954

mc_weight_w16 3 1 2818 moneypunct<char, false>::_M_initialize_moneypunct 2 1 1953
refine_subpel 33 0.7 23967 moneypunct<wchar_t, true>::_M_initialize_moneypunct 2 1 1953

refine_subpel.constprop.0 22 1 19328 _M_initialize_ctype 2 1 1941
x264_analyse_update_cache 4 1 4848 _M_install_facet 2 1 1200

x264_cabac_block_residual_8x8_rd_c 6 1 6543 _M_initialize_numpunct 3 1 1182
x264_cabac_block_residual_c 2 1 1392 __ieee754_log_avx 3 1 1076

x264_cabac_block_residual_rd_c 2 1 1857 __init_cpu_features 12 1 3165
x264_frame_expand_border 3 1 3767 __run_exit_handlers 2 1 881

x264_frame_expand_border_filtered 2 1 2871 init_cacheinfo 4 1 1372
x264_frame_expand_border_lowres 3 1 3412 uselocale 2 1 897

x264_intra_rd 2 1 2812 int_free 3 1 611
x264_macroblock_analyse 51 1 37294 IO_new_do_write 3 1 350

x264_macroblock_cache_load_progressive 16 0.62 12807 IO_vfprintf 3 1 347
x264_macroblock_cache_save 4 0.74 4171 printf_fp 10 1 1229
x264_macroblock_encode 5 0.9 4957

JP
EG

EN
C
O
D
ER

image_compare 3 1 2730
x264_macroblock_write_cabac 5 0.52 4941 fread 2 0.90 1040
x264_mb_analyse_inter_p16x8 8 1 2529 build_huffman 11 0.93 3065

x264_mb_analyse_intra 17 1 13433 create_png_image_raw 2 0.87 1306
x264_mb_analyse_intra_chroma.part.25 6 1 2289 compute_quant_table 2 1 794

x264_mb_analyse_p_rd 5 1 3658 intel_check_word 8 1 2960
x264_mb_analyse_transform_rd.part.26 4 1 2529 memcpy 3 0.69 1103

x264_mb_encode_chroma 4 0.37 2762 decode_next_row 2 0.89 759
x264_mb_mc 5 1 3324 quantize_pixels 2 0.91 512

x264_mb_predict_mv 12 1 6841

BO
DY

TR
AC

K

FlexImage<unsigned char, 1>::Set 7 1 3356
x264_mb_predict_mv_16x16 4 1 3503 FlexLine 7 1 3406

x264_mb_predict_mv_ref16x16 2 1 2303 BodyGeometry::IntersectingCylinders 4 1 2306
x264_me_search_ref 13 1 10246 TrackingModel::CreateEdgeMap 7 1 3336

x264_pixel_sad_x3_16x16 2 1 2303 TrackingModel::OutputBMP 9 1 4119
x264_rd_cost_mb 2 1 1424 TrackingModel::GetObservation 7 1 3365

x264_predict_lossless_4x4 2 1 2045 RandomGenerator::Rand 2 1 1492
x264_predict_lossless_16x16 2 1 1870 ImageMeasurements::InsideError 8 1 3779

x264_slice_write 8 1 4882 ImageMeasurements::ImageErrorEdge 2 1 1506
x264_rd_cost_mb 2 1 1424 ImageMeasurements::ImageErrorInside 2 1 1509

x264_pixel_sad_x4_16x16 4 1 2972 ImageMeasurements::EdgeError 20 1 8382
x264_pixel_sad_x4_8x8 4 1 1422 MultiCameraProjectedBody::ImageProjection 2 1 1492
x264_pixel_x3_8x8_c 3 1 2321

R
AY

TR

Intersect 3 1 14289
x264_sad_16x8c_p_c 4 1 3021 QueryScene 5 1 26895

x264_predict_lossless_16x16 2 1 1870 Raytrace 2 1 3712
x264_predict_lossless_4x4 2 1 2045

JM
EI

N
T tri_tri_intersect 14 0.52 1921

x264_rd_cost_mb 2 1 1424 vfprintf 2 1 521

Br. : Branches; Pr.: Probability; s.: seconds, RAYTR. : RAYTRACER

Table 5.4: Application’s jointly approximable branches

5.8.5 Evaluation of SpeculativeExecutionwith SelectiveApproximation

We now present the benefits of sensitivity analysis in speculative execution for approximate
computing benchmarks using rollback-free execution on the approximable load and branch
instructions. Our comparison is against the baseline execution where a branch misprediction
for any branch results in a penalty of pipeline flushing, and a cache-miss in the D1-cache for
any data results in fetching the correct data from the memory. The system configuration of
the simulation experiments in Sniper is shown in Table 5.5.

Chapter 5. Improving Runtime Efficiency of Programs using Approximate Computing 106

Architecture x86 with clock frequency of 2.66GHz, single core
Pipeline 5 stage In-order pipeline of width 1

Branch Predictor Pentium M, penalty: 15 cycles
Private L1 Cache 8KB, 4-way, 32 byte blocks, 3-cycles latency
Shared L2 Cache 32KB, 4-way, 32 byte blocks, 32-cycles latency
Main Memory A miss in L2 Cache is considered as a hit in the Main memory with a miss penalty of

173-cycles, per controller bandwidth 2.5 GB/s
Power Model McPAT [110]

VDD 1.6 Volts
Technology node 45 nm

Table 5.5: System Configuration

Performance Evaluation

In the evaluation, we assume that all the individually approximable branches and data are also
jointly approximable. This assumption is to show the maximum possible benefit in terms of
CPU cycles and the reduction in energy utilization that can be obtained with our rollback-free
speculative execution method with our sensitivity analysis. We now define some terms to
describe our experimental observations:

Definition 5.8 The percentage reduction in CPU cycles is computed as (Ce−Ca)∗100
Ce

, where
Ce and Ca are the CPU cycles with usual execution and with our proposed method on
approximable data loads and branches respectively. �

Definition 5.9 The percentage reduction in energy consumption is computed as (Je−Ja)∗100
Je

,
where Je, Ja are the energy footprints with usual execution and with our method respectively.
�

Definition 5.10 Drop rate is defined as the fraction of cache misses on approximable data
loads that do not initiate memory access requests [109]. �

The percentage reduction in CPU cycles and energy reduction are shown using 100% drop
rate. This is a tunable parameter to observe the performance and energy benefits against QoS
trade-off.

The configuration where a cache-miss on an approximable load memory request is never
requested from the primary memory is referred to as 100% drop rate. Figure 5.13 and Figure
5.14 respectively show the percentage reduction in CPU cycles and energy consumption
with our proposed method of rollback free execution on only the approximable loads, only
the approximable branches, and both. We observe an average of 22.85% reduction in CPU
cycles and 23.09% reduction in energy consumption over nine applications. We also observe
that the performance of the application Jmeint deteriorates with our no roll-back proposal
on approximable loads. We believe that the reason of such a deterioration is because of

Chapter 5. Improving Runtime Efficiency of Programs using Approximate Computing 107

 0

 10

 20

 30

 40

JpegEncoder

Sobel

Jm
eInt

BodyTrack

x264
Raytracer

Stream
Cluster

Blackscholes

Inversek2j

Average

G
a
in

 i
n
 C

P
U

 c
y
cl

e
s

(i
n
 %

)

Load
Branch

Load+Branch

1.
48

0.
06

-1
.9

9

20
.5

2

2.
10

0.
04

0.
06

8.
98

0.
00

3.
47

1.
29

24
.8

7

24
.7

0

64
.1

6

0.
93

44
.6

5

17
.6

2

0.
39

8.
28

20
.7

6

2.
20

24
.9

3

23
.2

7

72
.1

7

3.
62

44
.6

3

17
.7

2

8.
85

8.
28

22
.8

5

Figure 5.13: Percent gain in CPU cycles with selective no-rollback execution of approx-
imable loads and branches.

 0

 10

 20

 30

 40

JpegEncoder

Sobel

Jm
eInt

BodyTrack

x264
Raytracer

Stream
Cluster

Blackscholes

Inversek2j

Average

E
n
e
rg

y
 r

e
d

u
ct

io
n
 (

in
 %

)

Load
Branch

Load+Branch

1.
48

0.
08

-1
.2

0

12
.7

6

1.
80

0.
01

0.
05

6.
43

0.
00 2.

37

0.
24

23
.5

0 26
.7

7

66
.6

6

0.
82

46
.8

3

17
.6

5

0.
24

11
.4

5

21
.5

7

1.
48

23
.5

3 25
.8

0

71
.6

3

3.
00

46
.8

0

17
.7

6

6.
38

11
.4

5

23
.0

9

Figure 5.14: Percentage reduction in energy utilization with selective no-rollback execution
of approximable loads and branches.

the wrong execution paths taken due to incorrect load values resulting in more expensive
execution, either due to longer paths or expensive instructions in the alternate path.

QoS Evaluation

Fig. 5.15 shows the QoS trade-off with a speculative execution with no rollback policy
on error tolerant loads and branches in the application Bodytrack. It is a computer vision
application to track the 3D-posture of a human body from a sequence of images captured
from multiple cameras. The application tracks the human pose in the image using the edges
and foreground silhoutte as the features of the image. The application models the human

Chapter 5. Improving Runtime Efficiency of Programs using Approximate Computing 108

body with 10 conic cylinders, which are superimposed on the input image to show the human
pose [98].

Figure 5.15a shows the exact output consisting of an image with the application detected
human body pose shown with 10 conic-cylinders. Note that the human torso and the head,
the left hand and leg, and the right hand and leg are shown with Pink, Cyan and Yellow
conic-cylinders respectively. Figure 5.15b shows the output with misprediction penalty-free
execution of approximable loads and branches. We observe that the application is still able
to detect most of the human body parts but the colour distinction is lost. For example, the
human torso and head are shown in Yellow in the distorted image instead of Pink. The torso,
the head and the left hand position are not detected in the top-left human in the image. We
evaluate this loss of image quality in terms of SSIM (Structural Similarity Index) and it turns
out to be 0.953. This is 4.7% loss 2 with respect to the exact image in terms on SSIM. Since
our specified QoS tolerance is SSIM ≥ 0.8, this distorted image passes the QoS requirement.
This shows that our load and branch sensitivity analysis performed with a QoS definition
of SSIM ≥ 0.8, faithfully classifies the approximable loads and branches. A rollback-free
execution of these loads and branches results in nearly 72% reduction in CPU cycles and
energy consumption. In conclusion, we see that with an allowable degradation of 4.7% in
terms of our QoS definition in Bodytrack, a substantial benefit of nearly 72% reduction in
CPU cycles and energy consumption can be obtained.

(a) Exact Output (b) Load & branch approximation output

Figure 5.15: QoS trade-off in Bodytrack with our method on loads and branches.

2loss% = SSIM(exact_image)−SSIM(approx_image)
SSIM(exact_image) × 100, where exact_image and approx_image are images

produced by exact and approximate execution of a Bodytrack application

Chapter 5. Improving Runtime Efficiency of Programs using Approximate Computing 109

5.8.6 Reliability Evaluation of the Bayesian Analysis–Based Method

In order to test the reliability of our Bayesian analysis based method, we perform an ex-
periment to inject faults simultaneously at all the jointly approximable branches given by
the analysis and observe the resulting distortion in the QoS. We perform 1000 such fault
injection experiments and observe how many of these pass the QoS requirement. The QoS
metric and tolerance measures considered in the reliability evaluation per application are
the same as considered for sensitivity analysis, as mentioned in Table 5.3. The ratio of the
passed experiments to the total number of experiments gives the probability of the branches
to be jointly approximable. We compare this number with our computed joint probabilities
using Bayesian analysis. This comparison is shown in Table 5.6. In the table, the first col-
umn mentions the application, the second column shows the number of branches identified as
jointly approximable by our analysis in the corresponding application, the third column shows
the empirically computed probability that the identified branches are jointly approximable,
and the last column shows the computed probability of the identified branches to be jointly
approximable using our Bayesian analysis based method. We observe that the empirically
computed probability exactly matches with the probability computed by our method, in four
of the applications. In two of the applications, namely Jpeg encoder and x264, the empirical
and the computed probabilities differ by 0.01 and 0.3 respectively. This establishes the cor-
rectness of our analysis. In case of the Jpeg encoder, we similarly test the reliability of the
analysis by injecting a fault simultaneously in all the 11 jointly approximable branches. On a
test input image, this fault injection results in an image with no distortion with respect to the
reference image. A comparison of the resulting image due to branch faults and the original
image is shown in Fig. 5.16. Fig. 5.16a shows the reference image and Fig. 5.16b shows the
resulting image with branch fault injections simultaneously in all the jointly approximable
branches. This image shows no perceivable distortion. Fig. 5.16c shows the resulting image
when faults are injected simultaneously in 146 branches (branches that cause memory error
or segmentation fault have been removed) identified to be individually approximable using
the hypothesis testing method. This image has a PSNR of 17 DB with respect to the reference
image and does not meet the user-specified QoS distortion tolerance of PSNR ≥ 20 DB.
The distortion is clearly visible in the image. This establishes the reliability of our Bayesian
network based sensitivity analysis.

For joint data sensitivity analysis, constructing the DDG (Data Dependency Graph) is a
bottleneck. To address this, we resort to multiple fault injection-based hypothesis testing
for joint data sensitivity analysis with a confidence of inference θ = 0.6. The analysis
returns the set of data variables which are jointly approximable with a probability ≥ 0.6.
For reliability evaluation of our analysis, we perform 1000 data-fault experiments in all

Chapter 5. Improving Runtime Efficiency of Programs using Approximate Computing 110

(a) (b) (c)

Figure 5.16: QoS comparison with branch faults in approximable branches. (a) Reference
image (b) Image with faults simultaneously in all jointly approximable branches given by
Bayesian analysis and (c) Image with faults simultaneously in all individually approximable

branches given by hypothesis testing

Application #branches jointly approx. Passed runs/1000 Pr. jointly approx. by BA
JPEG encoder 11 0.94 0.93
Stream-cluster 12 1 1

JmeInt 9 1 1
Bodytrack 20 1 1

x264 33 1 0.7
Raytracer 5 1 1

Table 5.6: Reliability evaluation of the Bayesian analysis based method

Application #Loads jointly approx. Passed runs/1000
JPEG encoder 52 0.69
Stream-cluster 36 0.76

JmeInt 24 1
Bodytrack 27 1

x264 41 0.65
Raytracer 5 1

Table 5.7: Reliability evaluation of the jointly sensitive data analysis with confidence θ = 0.6

the data simultaneously in the set of approximable loads given by the analysis and observe
the number of experiments which pass the QoS requirement. The ratio of the number of
passed experiments to 1000 gives us an estimate of the probability that the data-set is jointly
approximable. The experimental observations are shown in Table 5.7. The first column
of the table shows the benchmark application, the second column shows the size of the
jointly approximable data set returned from hypothesis testing and the last column shows
the empirically computed probability that the data set is jointly approximable by data-fault
experiments. We observe that the empirically computed probability in the last column is

Chapter 5. Improving Runtime Efficiency of Programs using Approximate Computing 111

≥ 0.6 for all the benchmark applications. This is an expected result because the hypothesis
testing with confidence of inference θ = 0.6 should return only that data-set which is jointly
approximable with a probability ≥ 0.6.

5.9 Summary

In this chapter, we present a method for sensitivity analysis of data and branches in a program,
in order to infer the ones which are approximable. The analysis is based on statistical methods
and provides an inference with a probabilistic reliability measure. We provide a method to
identify loads / branches in a program using hypothesis testing and show the reliability of
our analysis with empirical results. A hardware design of a processor pipeline which can
exploit the sensitivity knowledge of instructions in order to implement speculative execution
with a selective no rollback policy is presented. Architectural simulations show benefits in
term of reduction in the consumed CPU cycles and energy with our speculative execution
scheme on a number of applications from approximate computing benchmarks. We believe
that our work will have important consequences on the application of approximate computing
in modern processors.

Our proposed sensitivity analysis using hypothesis testing and Bayesian analysis are both
based on sampling (executing) the application with random inputs chosen by following a
uniform distribution. In certain applications, generating such random inputs is hard. For
example, in a Jpeg-encoder application, we need random images to execute the application
and generating such random images is difficult. For such applications, we create a pool of
representative inputs and select inputs from the pool uniformly during the sampling process.
Considering inputs only from the finite pool may be a cause of inaccuracy in our analysis.
We attempt to improve on this process going forward to be able to mark more data and
instructions as approximation tolerant.

In this chapter, we have proposed a mechanism to utilize the output of our approximability
analysis in a speculative execution environment. While this is of great value to any processor
execution environment, an even further optimization is possible by extending the same
philosophy to a multi-core execution environment which are common place today, and have
more knobs of optimization. This is what we take up in the following chapter. In particular,
we assume a multi-core shared memory setup where processors have local private caches,
and typically synchronize on a shared cache and primary memory to ensure consistency. A
significant number of messages are exchanged to ensure consistency among processor cores
for the shared data elements. Thesemessages are overheads that any consistencymanagement
protocol induces to ensure coherent and consistent computation. In an exact computation

Chapter 5. Improving Runtime Efficiency of Programs using Approximate Computing 112

environment, none of these messages can be dispensed with, considering that correctness of
the computation may be affected, and is usually not tolerated. However, where approximate
computing is the computation model of choice, this leaves us a good room for optimization
with a possibility of reduction in the number of messages exchanged, considering the ones
that are exchanged to maintain synchrony on the approximable data elements. This is what
we leverage in the next chapter, and we show through simulation the significant simulation
advantage that our proposal brings in.

113

Chapter 6

Approximate Computing for
Multithreaded Programs in Shared
Memory Architectures

In this chapter, we explore the use of our sensitivity analysis techniques in the context ofmulti-
core architectures. Specifically, our goal is in identifying approximable instructions accessing
shared data in shared memory multi-core systems. In multi-core and multi-cached architec-
tures, cache coherence is ensured with a coherence protocol. However, the performance
benefits of caching diminish due to the cost associated with the protocol implementation.
In this chapter, we propose a novel technique to improve the performance of multi-threaded
programs running on shared-memory multi-core processors by embracing approximate com-
puting that is built on the foundations of our sensitivity analysis methods.

6.1 Introduction

The performance of applications running on single-core processors automatically improves
with newer generations of processors due to increasing clock speed. In multicore processors,
however, clever parallel implementation of applications is required to effectively exploit its
computational capability. Multithreaded programming has therefore gained importance with
the abundance of multi-threaded and multicore processors, and research on multi-core pro-
cessors, programming languages and runtime executions have been key topics in the research

Chapter 6. Approximate Computing for Multithreaded Programs in Shared Memory
Architectures

114

community. Caching in multicore processors mitigates the memory access latency but intro-
duces architectural challenges in ensuring the correct execution of multithreaded programs.
A memory location content can be present in multiple caches where it may be updated by
the individual cores. This may prevent the cores to see the same global order of all memory
updates - a primary condition for correctly executing parallel programs [111]. A multicore
processor satisfying this condition is called sequentially consistent [111]. Additionally, the
updates made on a memory location content present in multiple caches may result in an
inconsistent value in the memory if the updates are not communicated appropriately to the
sharer caches. This is the cache coherence problem. Processors implement a cache coher-
ence protocol (e.g. MESI) to ensure that the caches remain coherent. Implementing such a
protocol in the architecture incurs an additional cost and therefore, ensuring cache coherence
diminishes some of the performance benefits of caching in multicore processors.

In this chapter, we propose a strategy to improve the performance of multithreaded programs
running on shared-memory multicore processors by embracing approximate computing. Our
idea is to relax the coherence requirement on memory locations selectively in order to
reduce the cost associated with any cache-coherence protocol. In particular, we consider
instructions that update shared data and denote them as SWAPs (shared-write-access-points),
a name borrowed from [112]. We then perform a systematic sensitivity analysis of the effect
of having coherence faults at the SWAPs in a number of program executions. A coherence
fault refers to the non-communication of the update on a shared data by the SWAP, to the
sharer cores in amulti-core processor. Note that write-propagation is an essential requirement
for cache-coherence so that all the cores in a processor observe a consistent value in a memory
location. Essentially, our analysis observes the resiliency of an application to coherence faults
in a SWAP.

Our contributions in this chapter can be summarized as follows:

• We detect instructions in a multi-threaded program that writes to shared data (SWAPs)
and propose a statistical analysis extending our earlier contributions to infer SWAPs
which are tolerant to coherence faults. A coherence fault tolerant SWAP is one on
which relaxing the coherence requirement in order to reduce the cost associated with
a cache-coherence protocol ensures a bounded QoS degradation with a probabilistic
reliability guarantee.

• We propose an adapted cache-coherence protocol that relaxes the coherence require-
ment on stores from approximable SWAPs. Additionally, our protocol uses stale values
for cache misses of load data due to coherence. The stale value is the data at the time
of cacheline invalidation. We show that our adapted protocol reduces the number of
cache-line invalidations during program execution and is therefore efficient.

Chapter 6. Approximate Computing for Multithreaded Programs in Shared Memory
Architectures

115

6.2 Motivating Example

The goal of our analysis is to identify write instructions on shared data (SWAPs) for which
updates, if not communicated to the other cores, do not cause the computation to deviate from
exactness beyond an acceptable limit. The analysis infers a SWAP to be either sensitive or
approximable. By a sensitive SWAP, we mean that the cache-coherence requirement cannot
be relaxed on the shared-data updated by the SWAP, if the accuracy of the program is to
be kept within acceptable limits. It means that in an invalidation-based cache-coherence
protocol, an update by a sensitive SWAP on a shared data should invalidate the cache-lines
in the sharer caches containing the same shared data, if the program has to keep its accuracy
acceptable. Similarly, in an update-based cache coherence protocol, it would mean that an
update on the shared data should be communicated and updated in all other sharer caches
for the desired program accuracy. On the contrary, when we infer a SWAP as approximable,
we mean that the cache-coherence requirement on the shared data that is updated by the
SWAP can be relaxed and the program accuracy will remain acceptable with a user-defined
probability confidence. We illustrate with our idea with a simple example shown in Example
6.1.

1 s t a t i c vo id ∗F0 (vo id ∗ a rg) {
2 i n t temp=cnt −3;
3 p t h r e ad_mu t ex_ l o ck (&mlock) ;
4 c n t = c n t +temp ;
5 p t h r e ad_mu t ex_un lock (&mlock) ;
6 }
7 s t a t i c vo id ∗F1 (vo id ∗ a rg) {
8 i n t temp = cnt −2;
9 p t h r e ad_mu t ex_ l o ck (&mlock) ;

10 c n t = c n t +temp ;
11 p th r e ad_mu t ex_un lock (&mlock) ;
12 }
13 s t a t i c vo id ∗F2 (vo id ∗ a rg) {
14 i n t temp=cnt −1;
15 p t h r e ad_mu t ex_ l o ck (&mlock) ;
16 c n t = c n t +temp ;
17 p th r e ad_mu t ex_un lock (&mlock) ;
18 }

(a) An example of a multithreaded
program

T-0

 tmp = cnt -3;

lock(mlock);

cnt = cnt + tmp;

unlock(mlock);

T-1

tmp = cnt - 2;

lock(mlock);

cnt = cnt + tmp;

unlock(mlock);

T-2

tmp = cnt - 1;

lock(mlock);

cnt = cnt + tmp;

unlock(mlock);

5

7

2

5 2

53

3710

4 5

14 410

(b) Exact execution

T-0

 tmp = cnt -3;

lock(mlock);

cnt = cnt + tmp;

unlock(mlock);

T-1

tmp = cnt - 2;

lock(mlock);

cnt = cnt + tmp;

unlock(mlock);

T-2

tmp = cnt - 1;

lock(mlock);

cnt = cnt + tmp;

unlock(mlock);

5

7

2

5 2

53

358

4 5

12 48

(c) Approximate execution

Figure 6.1: Exact and approximate execution with a given interleaving.

Example 6.1 We illustrate our idea with a simple multithreaded program running on 3 cores
as shown in Figure 6.1. Let us assume that the functions F0, F1 and F2 are executed by
threads T-0, T-1 and T-2 respectively. We assume that thread T-0, T-1, and T-2 execute on
Core-0, Core-1, and Core-2 respectively. The program contains two variables of interest, the
shared variable cnt and the thread local variable temp. We ignore the mlock variable for the
time being.

Chapter 6. Approximate Computing for Multithreaded Programs in Shared Memory
Architectures

116

Figure 6.1b shows the exact execution of the program under a thread scheduling policy (the
execution sequence of the instructions is from top to bottom). In this execution, we make an
assumption that a copy of the memory location of cnt is present in the local caches of the
three cores. The Green circles associated with the program variables shown above the
program statements depict the value of the variable after executing the respective statement.
For example, after executing the statement tmp = cnt −3 in thread T-0, the values of tmp and
cnt are 2 and 5 respectively, shown in Green circles above the variables. On completion
of the program, the value of cnt is 14.

Consider the statement cnt = cnt+tmp in thread T-0 that writes to the shared variable. This is
a Shared Write Access Point (SWAP) in our terminology. Figure 6.1c shows the approximate
computation of the program, under the same thread scheduling (top to bottom) as in the exact
computation. For the sake of illustration, we assume in this approximate execution that any
instruction colored Red in thread T-0 is an approximable SWAP.

On executing this SWAP, the value of cnt is updated to 7 in the local cache of Core-0, however,
the copies of cnt in the other caches are not updated / invalidated. Therefore, Thread T-1 will
be using the stale value of cnt, i.e., 5 instead of 7 and execute the statement cnt = cnt + temp.
Since this statement in T-1 is not an approximable SWAP, the new value 8 of cnt is updated
in the other caches. Now, the last update statement of T-2 is executed by Core-2 with the new
value of cnt from its local cache, resulting in the final value of cnt to be 12. Observe that the
result of our approximate computing differs from the exact computation by a value of 2. If
this error in computation is acceptable to the user, we have an approximate program execution
that avoids some of the overhead for cache-coherence and can still produce an acceptable
result. This is the main idea of our work, as explained in the following sections. �

6.3 Detailed Methodology

Our proposed methodology consists of three main steps:

• The first step is a dynamic thread sharing analysis in order to identify SWAPs in a
multithreaded program [113], [114].

• The second step is for the sensitivity analysis of applications in the presence of co-
herence faults in program SWAPs. A statistical analysis [115] is then carried out on
the computational results to determine the sensitivity of SWAPs. The analysis injects
coherence faults at a SWAP under test and its effect on the application output is eval-
uated on a number of executions with varying inputs. The result of the analysis is the
inference of SWAPs as either approximable or sensitive. The analysis also provides

Chapter 6. Approximate Computing for Multithreaded Programs in Shared Memory
Architectures

117

a probabilistic measure of confidence by which we can ascertain that the program
output will remain within a user-specified acceptable QoS range in the presence of
coherence faults on approximable SWAPs. Our experiments show the presence of
approximable SWAPs in considerable numbers in applications from the approximate
computing domain, which are resilient to limited computational errors.

• The third and final step is to replace the SWAPs in the machine code of a program that
is found approximable, with an approximable counterpart. An extended Instruction Set
Architecture for the processor is proposed to represent approximable SWAP instructions
in a program. At runtime, the coherence requirement is then relaxed for data of the
approximable SWAP instructions. We propose an adaptation of the MESI cache-
coherence protocol [116] to benefit from the sensitivity knowledge obtained from
sensitivity analysis. The modified protocol attempts to reduce the number of cache-line
invalidations and coherence message exchanges between the cores during an execution
of a multithreaded program. Additionally, our protocol uses stale values for loadmisses
due to coherence, the stale value being the version at the time of invalidation, by having
them in an auxiliary cache.

In the following sections, we describe each of the steps in more detail. However, before
we describe our overall methodology for approximate execution in concurrent programs,
we briefly discuss a directory-based cache coherence protocol in order to address the cache
coherence problem in multicore processors, and forms the basis of our work.

6.3.1 Cache Coherence for Multicore Processors

Shared memory multicore processors typically have private caches for each core and a shared
main memory in the last level of the hierarchy [116]. In such a memory organization, it is
possible to have a copy of some data in the main memory to exist simultaneously in multiple
private caches. This poses particular challenges since any core’s local update on the data
shared in multiple caches needs to be communicated to the sharers in order to keep the
data consistent. A cache coherence protocol ensures this consistency requirement and is
implemented in the architecture. Our proposal in this work is based on a directory-based
cache coherence protocol, where private caches send memory read / write requests to a
central memory controller called the directory. The directory maintains the information of
which data is present in which core’s private cache and acts as a mediator for all memory
operations. We consider a write-back, invalidation based cache-coherence protocol. In a
write-back cache, a write-request hit is updated to the (local) cache but the same update to
the memory waits until the eviction of the block from the cache [117]. We now discuss the
MESI cache-coherence protocol where each cache-block is associated with a state.

Chapter 6. Approximate Computing for Multithreaded Programs in Shared Memory
Architectures

118

6.3.2 MESI Cache Coherence Protocol

The MESI Cache Coherence Protocol is a common invalidation-based protocol that supports
write-back caches. The state of a cache-block can be one of M, E, S or I. The semantics
associated with these states are:

• Modified (M) : The block is valid 1, owned 2, and potentially dirty 3. The cache has
the only valid copy of the block and must respond to requests for the block.

• Exclusive (E): The block is valid and clean 4. The cache has the only read-only copy
of the block.

• Shared (S) : The block is read-only, valid and clean, present in more than one cache.

• Invalid (I): The block is invalid and ready for eviction.

Core
1

Core
2

Core
3

Interconnection network

Core
0

M AA

Private cache

S B B

Private cache

S AB

Private cache

I AB

Private cache

…..

tracking Bits state

1000 M A

tag

state tag state tag state tag state tag

…..S B0110

Shared Memory

..

..

..

Figure 6.2: A 4-core shared memory architecture. The directory is located in the shared
memory. Each block in the memory is associated with a coherence state and presence bits.

Example 6.2 Figure 6.2 explains a simple directory-based protocol on a 4-core processor
with a shared L2 cache. Each core owns a private cache and share a common memory via
the interconnection network. The directory is present in the shared memory. This type of
architecture is typically implemented in modern processors such as in Intel Core-i7 [118],
[119]. The directory keeps presence bits, one bit per core, for each cache-block in order to

1A valid block contains an updated data
2The owner core of the block is responsible for responding to load/store requests for that block from other

cores
3A block is dirty if its data is updated but differs from the stale value in the memory
4A clean block contains the same data as in the memory

Chapter 6. Approximate Computing for Multithreaded Programs in Shared Memory
Architectures

119

mark the presence / absence status of the cache block in the respective core’s private cache.
Together with the presence bits, each cache-block in the directory also maintains a state. As
depicted in the figure, the block A is cached by core 0 only and is in the state M (Modified).
The corresponding presence bits in the directory store 1000 to show that block A is present
in the cache of core-0 and absent in the other core caches. Here, 1 depicts the presence of the
cache-block in the private cache of a core. Similarly, the Block B is cached by both core 1
and core 2 and is in the Shared (S) state. The corresponding presence bits in the directory is
given as 0110. When a core issues a load or store request that misses in its private cache, it
issues a request message to the directory. Depending on the block’s coherence state and the
presence bits, the directory either responds directly with the data or forwards the request to
one or more cores that ought to respond to the request. �

State Diagram

Figure 6.3 shows a description of the MESI directory protocol via state-diagrams borrowed
from [117]. The state diagram has three types of transition messages, namely request
messages, forwarded-request messages and response messages.

Req

I->S

Dir

S->S

(1) GetS

(2) Data

Req

I->S

Dir

M->S

(1) GetS

(3) Data

Owner

M->S

E->S

(2) Fwd-GetS

(3) Data

Req

I->E

Dir

I->E

(1) GetS

(2) Data

Req

I->M

Dir

I->M

(1) GetM

(2) Data [ack=0]

Req

I->M

Dir

M->M

E->M

Owner

M->I

E->I

(1) GetM (2) Fwd-GetM

(3) Data [ack=0]

Req

I->M

S->M

Dir

S->M

Sharer

S->I

(1) GetM

Sharer

S->I

(2) Inv

(2) Inv
(2) Data [ack>0]

(3) Inv-Ack

(3) Inv-Ack

(a) (b)

(c)

(e)

(e)

(f)

(d)

Figure 6.3: State-transitions in a MESI protocol.

The request messages are as follows :

• GetS: Obtains block in read-only mode.

Chapter 6. Approximate Computing for Multithreaded Programs in Shared Memory
Architectures

120

• GetM: Obtains block in read-write mode.

The forwarded-request messages are :

• Fwd-GetS: Forwards GetS request to owner.

• Fwd-GetM: Forwards GetM request to owner.

• Inv(alidation): To change a block to invalid state.

and the response messages are:

• Data: The updated data of a cache block, and

• Inv-Ack: An acknowledgment of block invalidation in a cache.

In Figure 6.3, the cache controller that requests a memory transaction is denoted by Req and
the directory controller is denoted by Dir. The owner of the block is denoted by Owner and
the sharers of the block are denoted by Sharer.

A brief summary of the transitions in the state-diagram is discussed below.

• Figure 6.3a: A requester core sends aGetS request for a cache-block to the directory. If
the state of the block in the directory is shared (S), then the requester obtains the block
in its cache from the directory (shown with the transition labelled with the response
message - Data) and marks it in the Shared (S) state locally.

• Figure 6.3b: A requester core sends a GetS request for a cache-block to the directory.
If the state of the block in the directory is modified (M), then the directory controller
sends a Fwd-GetS request to the owner. The owner upon receiving the Fwd-GetS
request, sends the updated block-data to the directory as well as to the requester core.
The directory upon receiving the updated block-data, changes the block state to shared
(S). The requester also changes the state of the block to shared (S) upon receiving the
data from the owner.

• Figure 6.3c: A requester core sends aGetS request to the directory. If the directory state
is Invalid (I), the directory sends a request to the memory to fetch the line and updates
the state in the directory to Exclusive (E). Data is then forwarded to the requester core
and the line is updated to Exclusive (E).

• Figure 6.3d: A requester core sends a GetM request to the directory. If the state of the
requested block in the directory is Exclusive (E) or Modified (M), a forward request
message Fwd-GetM is sent by the directory to the owner. This changes the block state
to modified (M). The owner then sends the block to the requester and invalidates (I) its
own copy.

Chapter 6. Approximate Computing for Multithreaded Programs in Shared Memory
Architectures

121

• Figure 6.3e: A requester core sends a GetM request to the directory. If the state of the
requested block in the directory is Invalid (I), the directory sends a request to memory
to fetch the line and updates the state in the directory to Modified (M). Data is then
forwarded to the requesting core and the line is updated to Modified (M).

• Figure 6.3f: A requester core sends a GetM request to the directory for a block that is
either in Invalid (I) or Shared (S) state. The directory has the block in shared (S) state.
The directory then forwards an invalidation request (Inv) to all the sharing cores having
the requested block in their private cache. As a response, the directory sends the Data
and the count of the sharers to the requester. The sharers invalidate the cache-block
copy upon receiving the Inv message from the directory and sends an Inv-ack response
message to the requester core. The requester counts the number of received Inv-acks
and transitions the block to modified (M) state when Inv-acks from all the sharers are
received.

Example 6.3 To illustrate the working principle of the MESI protocol, let us consider a
simple 3-cores processor system, each having its own private cache as shown in Figure 6.4.
The coherence protocol is implemented using a directory-based cache coherence protocol.
Consider 3 instructions that are executed by the cores. On executing each instruction, a series
of actions are required to complete the transaction. The notation for the action executed by
each core are as follows:

• Black circle denoted by are actions by Core-1.

• Yellow circle denoted by are actions by Core-2.

• Red circle denoted by are actions by Core-3.

Consider the following ordered actions by Core-1:

• 1 Rd X issues a read request to its own local cache. The request is a miss since the
line containing the data X is not in the cache.

• 2 GetS is a request message to the directory for the line containing the data X.

• The directory at present does not have the line and it needs to be fetched from the
memory. 3 is a GetS request and 4 is a data reply from memory.

• 5 the directory adds an entry of the requested line and marks the state as E and 6
returns the data to the requester core i.e., Core-1.

• 7 The requested line is then added to the local cache of Core-1 with the state E.

Similarly, consider the following ordered actions by Core-2:

Chapter 6. Approximate Computing for Multithreaded Programs in Shared Memory
Architectures

122

Core-1 Core-3Core-2

Rd X1

GetS2

Memory

GetS3
Data4

Data6

Directory

Cache Cache Cache

E X
state data

5

E X
state data

7

Rd X1

GetS2
Fwd-GetS3

Data5

Data5

S X
state data

6

S X

Wr X1

GetM2

S X
state data

M X
state data 3

Inv

I X
5

I X
state data 5

Inv4

Data [ack>0]4

Inv-Ack6

Inv-Ack6 M X
state data

7

Instructions

Rd XCore-1 :

Rd XCore-2 :

Wr XCore-3 :

4

6

4

Figure 6.4: A simple 3-cores processor each with its own local caches managed by a
directory-based MESI cache coherence protocol

• 1 Rd X issues a read request to its own local cache. The request is a miss since the
line containing the data X is not in the cache.

• 2 GetS is a request message to the directory for the line containing the data X.

• 3 Fwd-GetS is a forward message by the directory to the owner core, i.e., Core-1.

On receiving the request, 4 Core-1 updates the line state to S. The line is then

forwarded to both Core-2 (5 Data) and Directory (5 Data).

• Finally, 6 updates the line state to S.

Finally, consider the following ordered actions by Core-2:

• 1 WrX issues a write request, the request is a write miss in the local cache of Core-3.

• 2 GetM is a read/write request to the directory.

• 3 The directory changes the state of the requested line toM and sends an invalidation

message (4 Inv) to Core-1 and Core-2.

Chapter 6. Approximate Computing for Multithreaded Programs in Shared Memory
Architectures

123

• Core-1 and Core-2 upon receiving the invalidation request, invalidates their own copies
(5) and each core sends an invalidation acknowledgment (6 Inv-Ack) to Core-3.
�

In this work, we consider the directory based MESI cache-coherence protocol and propose
modifications to the protocol to incorporate the philosophy of approximate computing. In a
nutshell, with feedback from the sensitivity analysis step, for SWAPs that are deemed to be
approximable, we propose to drop the coherence messages to cores.

6.3.3 Our Approach

Figure 6.5 shows a block diagram of our methodology. It consists of two main phases, the
pre-execution analysis and the execution (architectural simulation) phase. The pre-execution
phase is performed one time, which transforms the application to its approximate version.
The execution phase executes the approximate version in an architecture which supports the
relaxed cache coherence protocol. In the following, we discuss these two phases in detail.

Thread Sharing
Analysis

Sensitivity
Analysis

QoS metric

QoS Tol.

Program
transformation

Approx
SWAPs

WRITE Reg<id>, MEMORY<address>

WRITE.approx Reg<id>, MEMORY<address>

transform

SWAP
points

PRE-EXECUTION
 ANALYSIS

EXE EXE Write by SWAP point

ARCHITECTURAL
SIMULATION

Block cache coherence
protocol’s invalidation

message to cores

CPU

Approx
SWAP

Confidence θ

Figure 6.5: Block-diagram of our pre-execution analysis by sensitivity analysis and ISA
extension.

Pre-execution Analysis

The pre-execution analysis phase consists of the following three main steps:

• The first step is to identify SWAPs in the program using a technique called Thread
Sharing Analysis (TSA) [112].

• The second step is the sensitivity analysis of SWAPs. The analysis studies the fault
tolerance of a multi-threaded program when coherence faults are injected in a SWAP.
Our idea is to systematically study the deviation of the computational result from
the expected correct one, in the presence of these faults. In particular, we propose

Chapter 6. Approximate Computing for Multithreaded Programs in Shared Memory
Architectures

124

statistical hypothesis testing to identify SWAPs where fault injections do not cause an
unacceptable deviation from the expected result. We call such SWAPs approximable.

• The third step is a program transformationwhere store / write instructions correspond-
ing to approximable SWAPs are replaced with their approximate counterparts.

Thread Sharing Analysis

The primary step in our analysis is to detect SWAPs in a multi-threaded program. For this, we
use Dynamic Thread Sharing Analysis (TSA) proposed in [112]. The analysis is performed
at runtime for a representative input set. For each program location (write instructions in our
case), the analysis algorithm tracks the memory location that the executing thread accesses. If
the same location is accessed by two different threads from two different program locations or
twice from the same program location, with at least one for writing, the location is marked as
shared. Consequently, all write instructions with a write-access on shared data are classified
as SWAPs.

Algorithm 6.1 Dynamic Thread Sharing Analysis
1: MemSet ← ∅
2: MemSet ← MemSet ∪ BSS ∪ DAT A // .bss and .data sections
3: function OnMemoryAllocation(start, end)
4: memArea← MemArea(start, end)
5: MemSet ← MemSet ∪ memArea
6: end function
7: function OnMemoryAccess(addr , thread_id, inst)
8: memArea← getMemArea(addr)
9: if isRead(inst) then

10: memArea.RdThread(thread_id)
11: memArea.RdInst(ins)
12: end if
13: if isWrite(inst) then
14: memArea.WrThread(thread_id)
15: memArea.WrInst(inst)
16: end if
17: end function
18: function onExecutionEnd()
19: S ← ∅ // Empty SWAPs Set
20: for all M ∈ MemSet do
21: if isShared(M) then
22: S ← S ∪ M .getWrInst()
23: end if
24: end for
25: end function

Chapter 6. Approximate Computing for Multithreaded Programs in Shared Memory
Architectures

125

Algorithm 6.1 presents an overview of Dynamic Thread Sharing Analysis. Our analysis
is designed using dynamic binary instrumentation and hence relies on events triggered by
a running program. On such events, the analysis routines capture useful information such
as instruction, thread ID, memory address and other architectural states of the running
application. All routines except isShared(), which is a helper routine are callback routines 5.
The algorithm first initializes the MemSet to an empty set as shown in Line-1. MemSet is a
set that stores memory allocation information. Static regions such as block-started-by-symbol
(bss) and data section are added to MemSet as shown in Line-2. In the following we discuss
each routine in detail:

OnMemoryAllocation() : The routine triggered when a dynamic memory allocation is
invoked such as malloc(), calloc(), realloc() etc. This routine captures the memory area and
then inserts it to MemSet.

OnMemoryAccess() : The routine is triggered when a memory read / write is invoked. This
routine records the read/write into the memory areas.

onExecutionEnd() : This routine is triggered when a program is about to exit. The job of
this routine is to extract SWAPs from the memory areas.

isShared() : This is a helper routine. It checks if the memory area is a shared memory
allocation.

T-1 T-2 T-3

1 2

3

static void *F0(void *arg)
{

int temp=cnt-3;
pthread_mutex_lock (&mlock);

cnt = cnt+temp;
pthread_mutex_unlock (&mlock);

}

4 5

static void *F1(void *arg)
{

int temp = cnt-2;
pthread_mutex_lock (&mlock);

cnt = cnt+temp;
pthread_mutex_unlock (&mlock);

}

static void *F2(void *arg)
{

int temp=cnt-1;
pthread_mutex_lock (&mlock);

cnt = cnt+temp;
pthread_mutex_unlock (&mlock);

}

6 7

8 9 10 13 14 15

11 12

Figure 6.6: A multi-threaded program with 3 threads accessing variables temp and cnt.
Reads are shown in Black and writes are shown in Red.

Example 6.4 Figure 6.6 shows a simple hypothetical multi-threaded program for illustrating
the thread sharing analysis problem. The program contains three threads executing functions
F0, F1 and F2. These threads access a shared variable cnt and their own thread local variable
temp. There are in total 15 read / write operations on these variables, marked with numbers
from 1 to 15. The goal of the thread sharing analysis is to find out which of these 15 accesses
are to thread-shared data. In the above example 3 , 8 and 13 are writes to the shared

data cnt and 2 , 4 , 7 , 9 , 12 , and 14 are reads on the shared data cnt. The thread

sharing analysis identifies 3 , 8 and 13 as Shared Write Access Points (SWAP) �

5Routine invoked when certain event happens

Chapter 6. Approximate Computing for Multithreaded Programs in Shared Memory
Architectures

126

Sensitivity Analysis

Our analysis is based on framing a statistical hypothesis and then testing the hypothesis with
a statistical hypothesis testing procedure like in the previous chapters, except that we now
carry out the analysis on shared variable writes in concurrent programs. We elaborate the
steps in the following:

Fault Injection Experiment

The analysis performs fault injection experiments on a SWAP, these faults are called coherence
faults. The definition of a coherence fault is as follows:

Definition 6.1 Let P be a multi-threaded program and s be a SWAP in P. s writes on a
shared data x, shared between k threads scheduled to execute on k cores of the processor.
Let e be the execution of the program P on an input I. A fault injection experiment at the
SWAP s is the resulting execution e′ with the same input I when the write of data v into x by
s is not communicated to the sharers of x. We refer to the non-communication of a write by
a SWAP to the sharers as a coherence fault. �

Coherence faults are usually expected to lead to erroneous execution due to incoherence of
the data on the shared variable x, across the caches of cores. Our goal of this fault experiment
by inserting a coherence fault is to observe the resiliency of the multithreaded program to a
relaxed coherence requirement. For example, if we observe that the quantitative difference
between the result of the correct execution e and the faulty execution e′ for the same input is
within the acceptable tolerance, then the fault experiment provides us with an evidence that
the shared write access point s is indeed tolerant to coherence faults. We now discuss how
we collect observations from many fault experiments to statistically infer the fault tolerant
SWAPs with a probabilistic confidence.

To emulate coherence faults during an execution, we associate a buffer to each thread during
execution as shown in Figure 6.7. The buffer stores values that are not propagated to other
threads. Our coherence fault model works as follows:

• We denote the SWAP that is being analyzed for sensitivity as the target SWAP. The
other SWAPs in the program are referred as non-target SWAPS. Given a target SWAP
that writes to a shared memory location / data variable X, for each thread executing the
target SWAP, the value of X is written to a thread local buffer.

• For all subsequent reads of X, the value of X is fetched from the local cache until it is
written by non-target SWAPs.

Chapter 6. Approximate Computing for Multithreaded Programs in Shared Memory
Architectures

127

• When non-target SWAPs write to X, it is written to memory and the content of X from
all buffers are removed.

The following example explaining an instance of our coherence fault model.

Example 6.5 Consider the simple example shown in Figure 6.7. We assume two threads T0
and T1 executing on Core-1 and Core-2 with the order of execution of the instructions shown
from 1 to 8. Consider an instruction 2 WrX executed by thread T0 that writes the value of
X as the target SWAP for analysis. On writes by a target SWAP of a thread, our fault-injection
model blocks the writes to memory but instead writes to a local buffer of a thread, in order
to emulate a non-communication of the write to other sharer caches. When the same thread
reads the data, it is then fetched from the local buffer. When other SWAPs write to X, it is
propagated to all threads. In the following, we will walk through a simple example as shown
in the figure:

Fault Injector

Exact Execution

QoS Checker

SPRT

Output (Approx)

PASS/FAILED

Output (Exact)

Sensitive/Insensitive

Buffer

T0 T1

LOC X

Rd X

Rd X

Wr X

1 1

2

3
Rd X

4 Rd X

6 Wr X

7 Rd X

Buffer

8 Rd X

Target SWAP

Memory

EXE

5

6

7

Figure 6.7: A demonstration of coherence fault model

• 1 Thread T0 and T1 read X.

• 2 Thread T0 issues a write (Wr X). Since this is a target SWAP, it is written in the
thread local buffer.

• 3 Thread T0 reads X. The value of X is fetched from the local buffer.

Chapter 6. Approximate Computing for Multithreaded Programs in Shared Memory
Architectures

128

• 4 Thread T1 reads X. The value of X is fetched from memory (stale value).

• 5 Thread T1 writes X. The value of X is written to memory and all buffers having
the value of X are cleared.

• 6 Thread T0 reads X. The value of X is fetched from memory (correct value).

• 7 Finally, thread T1 reads X from memory.

It may be noted that the thread T1 executes with the stale value at 4 Rd X. �

Hypothesis Testing

This is similar to the one proposed in Chapter 3, but here, we consider hypothesis of the form
"A SWAP in a multi-threaded program is approximable". The definition of an approximable
SWAP is as given below.

Definition 6.2 Given a confidence of inference θ and an acceptable QoS distortion measure
α, a SWAP s in a multithreaded program P is said to be approximable if and only if for all
executions e of P, the probability that the program output remains within the acceptable QoS
distortion α in the presence of a coherence fault in s, is at least θ. �

Our methodology then proceeds with testing the hypotheses for the SWAPs of interest, with
a hypothesis testing procedure. We frame the hypothesis in the same way as discussed in
Chapter 3 Section 3.3.3. The Sequential Probability Ratio Testing procedure is used to test
an hypothesis as discussed in Chapter 3 Section 3.3.4.

Program Transformation

The final step is a program transformation by replacing the 〈write〉 instructions corresponding
to approximable SWAPs by an approximate counterpart 〈write.approx〉. This extended ISA
allows for selectively switching to an approximate implementation of the cache-coherence
protocol that we discuss in the following section.

6.4 Relaxed Cache-Coherence Protocol

We propose a modified cache coherence protocol to exploit the sensitivity information from
our analysis for performance. We now elaborate the details below.

Chapter 6. Approximate Computing for Multithreaded Programs in Shared Memory
Architectures

129

Req

I->S

Dir

S->S

(1) GetM-A

(2) Data [ack=0]

Req

I->S

Dir

M->S

E->S

Owner

M->S

E->S

(1) GetM-A (2) Fwd-GetM-A

(3) Data [ack=0]

Req

S->S

(1) GetM-A(a)

(b) (c)

Figure 6.8: Modified MESI protocol

Modified Cache Coherence Protocol

We now describe the modifications on the MESI directory-based cache coherence protocol
that we carried out in order to relax the coherence requirement selectively with an objective
of mitigating the coherence overhead in multi-threaded applications. The proposed modifi-
cations in the state-diagram of the MESI directory-based cache coherence protocol discussed
in Section 6.3.1 are shown in Figure 6.8. We emphasize in Figure 6.8a that approximable
write-requests (GetM-A) by requester cores on cache-blocks, which are either in modified
(M) or in exclusive (E) state in the directory, are forwarded to the block owner to be sent to the
requester. Instead of the owner invalidating their own copy and then sending the data to the
requester, the owner now transitions to the shared (S) state and sends the data to the requester.
Essentially, the sharers continue their computation with a stale copy of the cache-block, not
updated with the latest write by the requester for blocks for which our sensitivity analysis
ensures that it is computationally acceptable to do so. Figure 6.8b shows that if a core puts
an approximable write-request on a cache-block to the directory, and the directory finds that
the cache-block is shared between cores, then instead of the sharers invalidating their local
copies, the modified protocol allows the sharers to keep their stale local copies. In this way,
many cache invalidates and invalidation message exchanges are saved. In Figure 6.8c, it
is shown that in our modified protocol, approximable writes are not communicated to the
sharers and the sensitivity analysis ensures that the loss of accuracy in computation will be
within acceptable limits. Therefore, many coherence messages are avoided with our adapted
protocol.

Example 6.6 To illustrate our modified MESI protocol, we consider an example shown in

Chapter 6. Approximate Computing for Multithreaded Programs in Shared Memory
Architectures

130

Figure 6.9. This is similar to Example 6.3, except that the last instruction is an approximate
write request by Core-3. The first and second instructions by Core-1 and Core-2 have the
same actions as in Example 6.3. The SWAP instruction Wr_approx X by Core 3 marked in

, is found to be approximable. The subsequent actions are as follows:

• 1 Wr_approx X is an approximate write request by Core-3.

• 2 GetM-A is an approximate request message to the directory requesting the line
containing X.

• The directory returns the line (3 Data[ack=0] 6) and this is inserted in the local cache

4 .

It can be observed that some of the messages and cache evictions are avoided. �

Core-1 Core-3Core-2

Rd X1

GetS2

Memory

GetS3
Data4

Data6

Directory

Cache Cache Cache

E X
state data

5

E X
state data

7

Rd X1

GetS2
Fwd-GetS3

Data5

Data5

S X
state data

6

S X

Wr_approx X1

GetM-A2

S X
state data

Inv

I X
5

I X
state data 5

Inv4

Data [ack=0]3

Inv-Ack6

Inv-Ack6 S X
state data

4

Instructions

Rd XCore-1 :

Rd XCore-2 :

Wr_approx XCore-3 :

4

6

4
M X
state data 3

Figure 6.9: A simple 3-core processor managed by a directory-basedMESI cache coherence
protocol. The protocol behaviour for an approximable-write instruction is depicted here.

6No acknowledgment

Chapter 6. Approximate Computing for Multithreaded Programs in Shared Memory
Architectures

131

Exploiting Staleness

In addition to the modified coherence protocol, we adopt the idea of using stale data for
coherence load misses, as proposed in [65]. This work proposes to approximate coherence-
related load misses by returning stale values, i.e., the version at the time of invalidation. The
authors propose a small Stale Victim Cache (SVC) with only 8 lines to hold invalidated lines
upon invalidation in the L1 data (L1-D) cache. To avoid the possibility of data getting very
stale, they further propose to time-out these lines from SVC. Using this technique, they report
an average speedup of 10-15% on the SPLASH-2 applications with the maximum error of at
most 0.08% across the entire suite. We adopt the idea of using SVC but without any time-out.

Stale Victim Cache (SVC)

SVC is a small cache that holds only those invalidated lines that are evicted due to coherence
actions from L1-D. The following three actions are carried out in the SVC.

• Insertion : When a cache line is invalidated due to coherence conflicts by the cache
replacement policy, it is inserted into the SVC.

• Lookup : When a core issues a load request to the L1-D cache, SVC is looked up
concurrently. If the line exists in the cache (valid or stale), the data is returned to the
core. Otherwise, if the line is present in the SVC, the data from SVC is returned to the
core. A request is then sent to fetch the updated data using the usual process.

• Eviction: An element in the SVC can get evicted in two ways: (a) When the data is
brought in from the memory hierarchy, the line is updated in the L1-D cache (in valid
state) and it is then removed from SVC, or (b) due to the replacement policy.

L2 Cache

Core

L1-I L1-D SV
C

L2 Cache

Core

L1-I L1-D SV
C

L2 Cache

Core

L1-I L1-D SV
C

Interconnect

Figure 6.10: Architectural configuration with SVC attached to L1-D in each core

Figure 6.10 shows the architectural configuration of the system with the SVC attached to the
L1-D cache on each core. The L2 cache is shared across all the cores. In the event of a
load miss in the L1-D cache, if the requested cache-line is present in invalid state, then the
stale data is given to the requester core. Concurrently, a memory request is sent to the next
level of the memory hierarchy. However, the requested core continues the execution with

Chapter 6. Approximate Computing for Multithreaded Programs in Shared Memory
Architectures

132

the stale value and as a result does not incur any miss penalty. The size of SVC is 256KB,
having 8 lines of 32 KB each and uses the Least-Recently-Used (LRU) replacement policy.
We consider this cache to have similar delay as that of the L1 cache.

6.5 Evaluation

We perform our proposed pre-execution analysis on 9 multithreaded applications from the
SPLASH 3.0multi-threaded benchmarks suite [120]. Wefirst describe briefly the applications
followed by the Quality of Service (QoS) metric and tolerance used in the evaluation.

6.5.1 Applications for Evaluation

• Fast Multipole Method (FMM) simulates interactions of a system of bodies in two
dimensions over a number of time-steps.

• Ocean is an application from the domain of oceanography. It studies the role of eddy
and boundary currents in influencing large-scale ocean movements [121].

• Raytracer is an image processing application that renders a three-dimensional scene
using the ray tracing algorithm [122].

• Cholesky factors a sparse matrix into the product of a lower triangular matrix and its
transpose [122].

• FFT, LU kernels and Raytracer are parallel versions of applications mentioned in
Chapter 3 Section 3.5.2.

6.5.2 QoS Metrics

To evaluate the performance and accuracy of our approach with respect to an exact compu-
tation, we adopt the QoS metrics as discussed in Chapter 3 Section 3.5.2. We compare the
outputs produced out of each benchmark application with respect to one or more of the QoS
metrics, that is standard in the approximate computing community.

Chapter 6. Approximate Computing for Multithreaded Programs in Shared Memory
Architectures

133

6.5.3 Evaluation of Sensitivity Analysis

In our evaluation for sensitivity analysis, we only consider those SWAPs that have at least 10
writes. Table 6.1 shows our observations. The confidence probability factor θ of hypothesis
testing taken for our analysis is 0.5. In the table, the 1st column shows the application,
the 2nd column shows the Lines of Code (LoC), the 3rd column shows the QoS metric, the
4th column shows the QoS tolerance in terms of the respective QoS metric, the 5th column
shows the number of SWAPs tested, the 6th column shows the number of approximable
SWAPs classified by our analysis, the 7th column shows the percentage of approximable
SWAPs classified by our analysis and the 8th column shows the time taken by our analysis
to complete the classification. The minimum and maximum number of SWAPs taken for
analysis are 190 (Cholesky) and 27 (LU-C) respectively. The lowest and highest percentages
of approximable SWAPs are 41% (Ocean-C) and 79% (FFT) respectively. The analysis took
the longest time of 50 hours to complete on FMM. The best time to complete the analysis is
30 minutes for LU-NC. The analysis time depends on the application’s execution time, the
number of samples tested by SPRT, probability factor θ and the inputs considered for sample
tests in SPRT. We observe that an average of 57% of the tested SWAPs are approximable in
the considered applications from the SPLASH 3.0 applications, showing their tolerance to
coherence faults.

Application LoC QoS Metric QoS Tol. SWAPs Tested SWAPs Appr. % Appr. Time
(hrs)

FMM 2945 Average Relative Error ≤ 0.1 144 9 6.25 50
OCEAN NC 2731 Average Relative Error ≤ 0.1 92 63 68.3 15.6
OCEAN C 4283 Average Relative Error ≤ 0.1 88 36 40.9 16.6

RAYTRACER 5783 PSNR ≥ 20 156 98 62.8 17
CHOLESKY 3847 Percent Error ≤ 0.1 190 85 44.7 8.10

FFT 668 Normalized Mean Error ≤ 0.1 24 19 79.1 0.82
LU NC 494 Normalized Mean Error ≤ 0.1 28 20 71.4 0.51
LU C 916 Normalized Mean Error ≤ 0.1 27 20 74 0.52
RADIX 654 matching 0 31 21 67.7 0.8

Appr.:Approximable; %Appr. : Percentage of the tested SWAPs inferred approximable; LoC: Lines of Code; QoS:
Quality of Service; Tol. : Tolerance

Table 6.1: Sensitivity analysis of SWAPs by hypothesis testing.

6.5.4 Performance Evaluation

In this section, we show the benefits of our approximate computingmethod using themodified
cache coherence protocol (referred to as CCP in the figure), in comparison with an exact
baseline execution. We use Sniper to carry out the architectural simulation. Table 6.2 shows
the simulation parameters configured for our simulation. Figure 6.11a shows the performance
gain in terms of CPU cycles and energy reduction in comparison with the baseline execution.

Chapter 6. Approximate Computing for Multithreaded Programs in Shared Memory
Architectures

134

Parameters Values
Cores 16 and 32 cores, Nahalem 2.24GHz
L1 32KB I Cache, 32 KBDCache, 32 Cache block size, private

per core, 2 way associativity, 2 cycles hit latency, MESI
coherence protocol

L2 128KB per core,S-NUCA, 8 way, 20 cycles hit latency.
Network on Chip (NoC) Mesh 4 × {4,8}
Memory Controllers 4

Table 6.2: Architectural configuration used for simulations

 0

 5

 10

 15

 20

 25

 30

 35

FM
M

OCEA
N-N

C

OCEA
N-C

RA
YT

RA
CER

CHOLE
SK

Y
FF

T
C-L

U

NC-L
U

RA
DIX

AV
G

G
a
in

 i
n
 C

P
U

 C
y
cl

e
s

(i
n
 %

)

SVC
SVC+Approx.CCP

(a) Gain in CPU cycles

-5

 0

 5

 10

 15

 20

 25

 30

FM
M

OCEA
N-N

C

OCEA
N-C

RA
YT

RA
CER

CHOLE
SK

Y
FF

T
C-L

U

NC-L
U

RA
DIX

AV
G

E
n
e
rg

y
 r

e
d

u
ct

io
n
 (

in
 %

)

SVC
SVC+Approx.CCP

(b) Energy reduction (in Joules)

Figure 6.11: Performance gain (in %) with Stale Victim Cache (SVC) and SVC + Approx.
CCP

 0

 0.5

 1

 1.5

 2

FM
M

OCEA
N-N

C

OCEA
N-C

RA
YT

RA
CER

CHOLE
SK

Y
FF

T
C-L

U

NC-L
U

RA
DIX

AV
ER

AG
E

M
is

se
s

se
rv

e
d
 (

in
 %

)

(a) Miss served by SVC and L1-D on cache
misses (in %)

-15

-10

-5

 0

 5

FM
M

OCEA
N-N

C

OCEA
N-C

RA
YT

RA
CER

CHOLE
SK

Y
FF

T
C-L

U

NC-L
U

RA
DIX

C
o
h
e
re

n
ce

 I
n
v
 (

in
 %

)

(b) Coherence invalidation reduction in Ap-
prox.CCP in comparison with exact execution

Figure 6.12: Cache-misses served by SVC and L1-D cache in SVC, and cache-misses in our
approach (Approx-CCP), and coherence invalidation in our approach

On an average, our approach shows 15.5% gain in terms of CPU cycles and 11.5% reduction
in energy. Figure 6.13f shows a comparison with [65], that proposes to serve stale values on
load misses due to coherence invalidation. With our approach, we observe a further 1.72%
gain in CPU cycles and 1.7% reduction in energy utilization. Figure 6.12 shows the memory
sub-system statistics. We observe on an average, 0.26% reduction in L1-D misses, 1.45%
reduction in invalidation messages due to coherence and 15.46% reduction in request to load
data messages from remote caches. This demonstrates the achieved reduction in the overhead

Chapter 6. Approximate Computing for Multithreaded Programs in Shared Memory
Architectures

135

-3

-2

-1

 0

 1

 2

FM
M

OCEA
N-N

C

OCEA
N-C

RA
YT

RA
CER

CHOLE
SK

Y
FF

T
C-L

U

NC-L
U

RA
DIX

AV
ER

AG
E

L1
 M

is
s

(i
n
 %

)

SVC
SVC+Approx.CCP

(a) L1-D miss (in %)

 0
 5

 10
 15
 20
 25
 30
 35
 40

FM
M

OCEA
N-N

C

OCEA
N-C

RA
YT

RA
CER

CHOLE
SK

Y
FF

T
C-L

U

NC-L
U

RA
DIX

AV
ER

AG
E

L2
 M

is
s

(i
n
 %

)

SVC
SVC+Approx.CCP

(b) L2 miss (in %)

-6

-4

-2

 0

 2

 4

 6

FM
M

OCEA
N-N

C

OCEA
N-C

RA
YT

RA
CER

CHOLE
SK

Y
FF

T
C-L

U

NC-L
U

RA
DIX

AV
ER

AG
E

N
U

C
A

 M
is

s
(i

n
 %

) SVC
SVC+Approx.CCP

(c) NUCA cache miss (in %)

-10

-5

 0

 5

 10

FM
M

OCEA
N-N

C

OCEA
N-C

RA
YT

RA
CER

CHOLE
SK

Y
FF

T
C-L

U

NC-L
U

RA
DIX

AV
ER

AG
E

D
R

A
M

 a
cc

e
ss

 (
in

 %
) SVC

SVC+Approx.CCP

(d) DRAM access (in %)

-80

-60

-40

-20

 0

FM
M

OCEA
N-N

C

OCEA
N-C

RA
YT

RA
CER

CHOLE
SK

Y
FF

T
C-L

U

NC-L
U

RA
DIX

AV
ER

AG
E

D
R

A
M

 l
o
a
d
 (

in
 %

)

SVC
SVC+Approx.CCP

(e) DRAM load request (in %)

-60
-50
-40
-30
-20
-10

 0
 10
 20
 30

FM
M

OCEA
N-N

C

OCEA
N-C

RA
YT

RA
CER

CHOLE
SK

Y
FF

T
C-L

U

NC-L
U

RA
DIX

AV
ER

AG
E

R
e
m

o
te

 c
a
ch

e
 l
o
a
d

 (
in

 %
)

SVC
SVC+Approx.CCP

(f) Load from remote-cache (%)

Figure 6.13: Architectural simulation statistics for SVC and Approx CCP in comparison
with exact execution

of ensuring cache-coherence, with our approximate execution scheme.

6.6 Summary

In this chapter, we present a sensitivity analysis technique for instructions in a multi-threaded
program, in order to determine the ones which are approximable. We show that a substan-
tial number of thread instructions deem fit to be approximable. In order to harmonize the
hardware-software co-design, we propose a modified approximation aware cache coherence
protocol that triggers on every approximable write miss, and acts differently as compared
to a classical exact execution. We show an application of our analysis by not sending the
invalidation messages triggered by such approximable writes on shared data. We present

Chapter 6. Approximate Computing for Multithreaded Programs in Shared Memory
Architectures

136

performance benefits in terms of CPU cycles and energy benefits using an architectural sim-
ulator. Our experiments make us believe that strict coherence requirement may be dispensed
with for many approximate computing applications, giving us benefits in performance and
energy.

137

Chapter 7

Conclusion and Future Directions

The objective of this thesis is to study the evolving paradigm of approximate computing
from two different perspectives. On one side, we propose strategies to automatically identify
approximable data and instruction elements inside application programs, such that controlled
inaccuracies in these identified elements do not affect the correctness of computation beyond
acceptable limits. On the other side, we combine the benefits of approximate computation
with speculative execution inside modern processors to derive significant benefits, as we
demonstrate through extensive experiments on architecture workloads.

In this thesis, we begin our study on using statistical sampling techniques for automatic clas-
sification / identification of application data that are resilient to limited errors, in other words,
minor errors in those data elements are still acceptable in the application domain they are
used in. Indeed, a wide range of application domains today, ranging from machine learning,
computer vision, signal processing to planning and robotics, exhibit an intrinsic resilience
towards minor errors, and are thus, suitable candidate domains for approximate computing
to be applied to. The challenge in most of these domains is in identifying automatically the
correct spots that lend themselves to approximation, considering the scale and complexity of
modern workloads, and the complexity of the identification task thereof. Identifying insensi-
tive error resilient data of an application is considered a non-trivial task, especially when the
application is large and has substantial data and control dependencies. Manual annotation
of data may not be reliable and may result in unacceptable output even when one data is
mis-annotated as insensitive / approximable in approximation aware programming languages
like EnerJ. While a number of methods for automated resilience quantification and identifi-
cation have been proposed in literature, the key novelty of our approach is in combining static

Chapter 7. Conclusion and Future Directions 138

and dynamic analysis with statistical sampling, that gives us an unique edge over existing
methods in literature. Additionally, we show the reliability of our analysis with empirical
results. Indeed, as we demonstrate through extensive experiments on real workloads, the
quality of the computation resulting out of approximations professed by our methods has a
distinct advantage over ones produced using existing approaches or even manual annotations.
We believe that our proposal has the potential to widen the horizon of approximate computing
to a wider application domain going forward.

In our second contribution as outlined in Chapter 5, we extend the framework for approx-
imability analysis to program instructions. While our main objects of interest in Chapter 3
are around data elements in a program, the focus in this chapter shifts to approximability
analysis of program instructions. While approximation in data elements can give us some
performance benefits, the main motivation behind this work is to be able to connect approx-
imable instructions to the execution runtime and explore ways to expedite or derive benefits
therein. In particular, we propose a technique that can automatically classify program data
and load / branch instructions that are amenable for approximation. Further, a Bayesian
analysis methodology is proposed to identify the loads / branches that are jointly approx-
imable. As we witness through our experiments, our intuitions are indeed well justified. It
is often the case that a good number of instructions in an application in these domains are
approximable as well, however, these are outside the scope of optimization of even the most
sophisticated compilers. Our approach is able to identify these instructions in an automated
way, building on the foundation of approximability analysis outlined earlier, and therefore,
leads to substantial performance benefits during execution.

In the subsequent chapters, we build on the benefits that our approximability analysis frame-
work provides, and connect to modern processor pipelines. In particular, we propose the
hardware design of a processor pipeline that can exploit the approximability knowledge of
instructions to implement speculative execution with a selective no rollback policy. The
paradigm of speculative execution is a defacto performance enriching technique in modern
processors, whereby modern processors hide the latency overheads of long latency instruc-
tions by suitably speculating values or program paths, without holding the computation for
long latency instructions to respond with relevant values. However, when the speculation
fails, a rollback is needed to always keep program executions on the correct path. Our novel
contribution in this context is a proposal to dispense rollback for approximable instructions,
by allowing the computation on the predicted path with predicted values irrespective of a fail-
ure. The fact that these instructions are provably approximable, as deemed so by our earlier
analysis, helps us leverage on this no rollback model of computation, that has the potential
of being able to derive substantial performance benefits in terms of latency and energy since
a significant number of instruction executions are done away with. In particular, we look at

Chapter 7. Conclusion and Future Directions 139

loads for which cache misses usually dictate a memory access, and a branch, for which, a
misprediction mandates a rollback and fetch and execute from the correct path. Based on our
identification of approximable loads and branches, we allow the processor to continue with
random / stale values for cachemisses and on the false path in case of a misprediction. Indeed,
as results show, both these techniques lead to substantial performance gains as expected, and
significant latency and energy savings.

As the final contribution of this thesis, we extend our approximability analysis technique to in-
structions in a multi-threaded execution context and automatically identify concurrent writes
that are approximable. This has a significant performance promise in multi-threaded con-
current workloads, considering the fact that a significant number of messages are exchanged
in this context for maintaining coherence of shared data across the different processors on
which the threads execute. As our experiments confirm, in this case as well, a substantial
number of such instructions deem fit to be approximable, and do not require the processors
to synchronize to be on the correct execution path within allowable error limits. In order
to bridge the hardware / software co-design, we propose a modified approximation aware
cache coherence protocol that triggers on every approximable write miss, and acts differently
as compared to a classical exact execution. We show an application of our analysis by not
sending the invalidation messages triggered by such approximable writes on shared data. Our
experiments confirm that in this case as well, our intuitions are well justified, and the fact
that strict coherence may be dispensed with for many approximate computing applications
executing on multiple processors, with guaranteed benefits in performance and energy.

This thesis opens up a lot of avenues for future exploration around approximate computing.
We outline some of the directions below.

• Extending the approximability analysis framework for more fine-grained analysis:
In our current work, we rely on statistical sampling techniques for identification of
approximable instructions. Our analysis is tightly coupled with static and dynamic
program analysis techniques that exploit the syntactical structure of the program in
terms of the control and data flow to derive better insights for approximability. While
our analysis is effective in practice and leads to quite accurate results in terms of
resilience analysis, we believe that it is often possible to derive more accurate insights
by considering the semantic structure of the program, the data elements and the data
structures they are part of. In particular, it may often be the case that a data element
is not approximable when the end to end program input space is considered, however,
it may be resilient to errors only within certain input domains. Our current analysis is
not able to identify such fine-grained approximable points, and works only at the entire
programboundary considering the entire program spacewhen the degree of deviation of
an approximated execution is comparedwith the correct execution. Further, we consider

Chapter 7. Conclusion and Future Directions 140

instructions as individual entities in our approximability analysis. Going ahead, we
wish to extend our framework to be able to provide a quantitative assessment of the
contribution of each block of code to the quality of the final result. Such fine-grained
analysis can derive insights like if an input or intermediate variable x is perturbed
within an interval, and, as a result, the variation of the value of an output variable y is
small, then x is insignificant to y. We wish to explore techniques from interval analysis
and algorithmic differentiation to derive such refined insights, something that is beyond
the scope of our current method. We believe this will enrich our current framework
even further, with an ability to automatically quantify the significance of computations
and to detect variations in significance among parts of code.

• A study on combining approximations: In our thesis, we have focused primarily on
optimizing on single points of approximability in the execution stack and to show
benefits in energy or execution time. Going ahead, we wish to investigate if combining
multiple approximation techniques spanning more than one layer of the system stack
compound or reduce the benefits, and if these benefits / reductions are generic across
different application domains. In order to provide a concrete demonstration, we plan
to focus on three approximation categories: skipping computations, approximation of
arithmetic instructions, and approximation of communications between computational
elements. As representatives of each category, we may evaluate loop perforation,
reduced arithmetic precision, and relaxation of synchronization, along similar lines as
in our current work. If our findings are positive, meaning that these indeed generate
compounded benefits, we wish to revisit the design of the execution runtime stack to
be able to make way for approximations all across. This, we believe, will make way
for the design of tightly integrated approximate accelerators. This will enable moving
applications into a paradigm in which the architecture, programming model, and even
the algorithms used to realize the application are all fundamentally embraced and tuned
for approximate computing.

• Quantifying approximations with formal guarantees: An important direction of future
research is on formally proving correctness of the approximations derived using our
methods. In particular, we wish to utilize the rich foundations of formal methods,
probabilistic / quantitative reasoning to derive correctness guarantees on the quality
of the approximations with respect to their deviations from the correct output. In the
present scenario, the guarantees provided are based on the technique used to derive
approximability, either through controlled sampling or using data flow analysis. Our
plan is to derive formal guarantees on the extent of correctness compromised by the
approximations introduced by our method. We believe this can be an important aid for
a designer to embrace approximation, that is missing in the current design flow.

Chapter 7. Conclusion and Future Directions 141

We believe that approximate computing research has a significant role to play in the next era of
computer system design. With the semi-conductor industry increasingly embracing the fact
that traditional approaches to scaling performance are losing steam and hardware techniques
to ensure perfect reliability are growing to be prohibitively expensive, approximationwill start
getting adopted in mainstream design flows. We believe that our contributions outlined in
this thesis will have an useful impact going forward as we accept to embrace the approximate
computing paradigm in our routine computations.

142

Appendix A

Publications

A.1 List of Publications

• B. Nongpoh, R. Ray, M. Das, and A. Banerjee, Enhancing speculative execution
with selective approximate computing, ACM Transactions on Design Automation of
Electronic Systems (TODAES), vol. 24, no. 2, 26:1-26:29, 2019.

• B. Nongpoh, R. Ray, S. Dutta, and A. Banerjee, Autosense: A framework for
automated sensitivity analysis of program data, IEEE Transactions on Software
Engineering vol. 43, no. 12, pp. 1110–1124, 2017.

• B. Nongpoh, R. Ray, and A. Banerjee, Approximate computing for multithreaded
programs in shared memory architectures, In Proceedings of the 17th ACM-IEEE
International Conference on Formal Methods and Models for System Design (MEM-
OCODE) 2019, pp. 11:1-11:9

A.2 Awards and Recognition

• Google Travel Grant award amount $2000 towards attending the 11th joint meeting of
the European Software Engineering Conference and Symposium on the Founda-
tions of Software Engineering (ESEC/FSE) Paderborn, Germany, September 04-08,
2017.

Appendix A. Publications 143

• ACMSIGSOFTCAPSTravel Grant award amount $430 towards attending ESEC/FSE
2017 Paderborn, Germany, September 04-08, 2017.

144

Bibliography

[1] V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan, “Analysis and char-
acterization of inherent application resilience for approximate computing”, in 2013
50th ACM/EDAC/IEEE Design Automation Conference (DAC), 2013, pp. 1–9. doi:
10.1145/2463209.2488873 (page 1).

[2] A. Agrawal, J. Choi, K. Gopalakrishnan, S. Gupta, R. Nair, J. Oh, D. A. Prener,
S. Shukla, V. Srinivasan, and Z. Sura, “Approximate computing: Challenges and
opportunities”, in 2016 IEEE International Conference on Rebooting Computing
(ICRC), 2016, pp. 1–8. doi: 10.1109/ICRC.2016.7738674 (page 3).

[3] E. Kreyszig, Advanced Engineering Mathematics. USA: John Wiley and Sons, INC.,
2006, isbn: 978-0-471-48885-9 (pages 6, 50).

[4] A.Wald, “Sequential tests of statistical hypotheses”,Ann.Math. Statist., vol. 16, no. 2,
pp. 117–186, Jun. 1945. doi: 10.1214/aoms/1177731118. [Online]. Available:
http://dx.doi.org/10.1214/aoms/1177731118 (pages 7, 53–55, 81).

[5] M. Naik. (2018). Introduction to Software Analysis, [Online]. Available: https:
//www.cis.upenn.edu/~alur/CIS673/isil-plmw.pdf (visited on 01/01/2018)
(pages 8, 9, 14, 15).

[6] I. Dillig. (2014). A Gentle Introduction to Program Analysis, [Online]. Available:
https://www.cis.upenn.edu/~alur/CIS673/isil-plmw.pdf (visited on
01/21/2014) (page 8).

[7] M. Pistoia and U. Erlingsson, “Programming languages and program analysis for
security: A three-year retrospective”, SIGPLAN Not., vol. 43, no. 12, pp. 32–39, Feb.
2009, issn: 0362-1340. doi: 10.1145/1513443.1513449. [Online]. Available:
http://doi.acm.org/10.1145/1513443.1513449 (page 8).

[8] S. Wagner, J. Jürjens, C. Koller, and P. Trischberger, “Comparing bug finding tools
with reviews and tests”, in Proceedings of the 17th IFIP TC6/WG 6.1 Interna-
tional Conference on Testing of Communicating Systems, ser. TestCom’05, Montreal,

https://doi.org/10.1145/2463209.2488873
https://doi.org/10.1109/ICRC.2016.7738674
https://doi.org/10.1214/aoms/1177731118
http://dx.doi.org/10.1214/aoms/1177731118
https://www.cis.upenn.edu/~alur/CIS673/isil-plmw.pdf
https://www.cis.upenn.edu/~alur/CIS673/isil-plmw.pdf
https://www.cis.upenn.edu/~alur/CIS673/isil-plmw.pdf
https://doi.org/10.1145/1513443.1513449
http://doi.acm.org/10.1145/1513443.1513449

BIBLIOGRAPHY 145

Canada: Springer-Verlag, 2005, pp. 40–55, isbn: 3-540-26054-4, 978-3-540-26054-
7. doi: 10.1007/11430230_4. [Online]. Available: http://dx.doi.org/10.
1007/11430230_4 (page 8).

[9] J. Laski and W. Stanley, Software Verification and Analysis: An Integrated, Hands-
On Approach, 1st ed. Springer Publishing Company, Incorporated, 2009, isbn:
1848822391, 9781848822399 (page 8).

[10] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman,Compilers: Principles, Techniques,
and Tools (2Nd Edition). Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 2006, isbn: 0321486811 (page 8).

[11] S. Midkiff, Automatic Parallelization: An Overview of Fundamental Compiler Tech-
niques. Morgan and Claypool, 2012, isbn: 9781608458424. [Online]. Available:
https://ieeexplore.ieee.org/document/6813266 (page 8).

[12] C. Sadowski, J. van Gogh, C. Jaspan, E. Söderberg, and C. Winter, “Tricorder:
Building a program analysis ecosystem”, in Proceedings of the 37th International
Conference on Software Engineering - Volume 1, ser. ICSE ’15, Florence, Italy: IEEE
Press, 2015, pp. 598–608, isbn: 978-1-4799-1934-5. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2818754.2818828 (page 8).

[13] E. Dijkstra. (2005). On the reliability of programs, [Online]. Available: https:
//www.cs.utexas.edu/users/EWD/transcriptions/EWD03xx/EWD303.html

(visited on 06/27/2015) (page 9).
[14] A. Moller and M. I. Schwartzbach. (2018). Static Program Analysis, [Online]. Avail-

able: https://cs.au.dk/~amoeller/spa/ (visited on 10/01/2018) (pages 9,
16–18, 20, 21).

[15] W. Landi, “Undecidability of static analysis”, ACM Lett. Program. Lang. Syst., vol. 1,
no. 4, pp. 323–337, Dec. 1992, issn: 1057-4514. doi: 10.1145/161494.161501.
[Online]. Available: http://doi.acm.org/10.1145/161494.161501 (page 9).

[16] (page 9).
[17] N. Ayewah and W. Pugh, “The google findbugs fixit”, in Proceedings of the 19th

International Symposium on Software Testing and Analysis, ser. ISSTA ’10, Trento,
Italy: ACM, 2010, pp. 241–252, isbn: 978-1-60558-823-0. doi: 10.1145/1831708.
1831738. [Online]. Available: http://doi.acm.org/10.1145/1831708.
1831738 (page 9).

[18] Synopsys. (2019). Coverity ScanTool, [Online].Available:https://scan.coverity.
com/ (visited on 05/14/2019) (page 9).

[19] Facebook. (2019). Facebook Infer : A static analyzer for Java, C, C++, and Objective-
C, [Online]. Available: https://github.com/facebook/infer (visited on
05/14/2019) (page 9).

https://doi.org/10.1007/11430230_4
http://dx.doi.org/10.1007/11430230_4
http://dx.doi.org/10.1007/11430230_4
https://ieeexplore.ieee.org/document/6813266
http://dl.acm.org/citation.cfm?id=2818754.2818828
http://dl.acm.org/citation.cfm?id=2818754.2818828
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD03xx/EWD303.html
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD03xx/EWD303.html
https://cs.au.dk/~amoeller/spa/
https://doi.org/10.1145/161494.161501
http://doi.acm.org/10.1145/161494.161501
https://doi.org/10.1145/1831708.1831738
https://doi.org/10.1145/1831708.1831738
http://doi.acm.org/10.1145/1831708.1831738
http://doi.acm.org/10.1145/1831708.1831738
https://scan.coverity.com/
https://scan.coverity.com/
https://github.com/facebook/infer

BIBLIOGRAPHY 146

[20] T. Ball, B. Cook, V. Levin, and S. K. Rajamani, “Slam and static driver verifier: Tech-
nology transfer of formal methods inside microsoft”, in Integrated Formal Methods,
E. A. Boiten, J. Derrick, and G. Smith, Eds., Berlin, Heidelberg: Springer Berlin
Heidelberg, 2004, pp. 1–20, isbn: 978-3-540-24756-2 (page 9).

[21] D. R. Cok and J. R. Kiniry, “Esc/java2: Uniting esc/java and jml”, in Construction
and Analysis of Safe, Secure, and Interoperable Smart Devices, G. Barthe, L. Burdy,
M. Huisman, J.-L. Lanet, and T. Muntean, Eds., Berlin, Heidelberg: Springer Berlin
Heidelberg, 2005, pp. 108–128, isbn: 978-3-540-30569-9 (page 9).

[22] F. E. Allen, “Control flow analysis”, in Proceedings of a Symposium on Compiler
Optimization, Urbana-Champaign, Illinois: ACM, 1970, pp. 1–19. doi: 10.1145/
800028.808479. [Online]. Available: http://doi.acm.org/10.1145/800028.
808479 (page 9).

[23] F. E. Allen and J. Cocke, “A program data flow analysis procedure”,Communications
of the ACM, vol. 19, no. 3, p. 137, 1976 (pages 12, 13).

[24] “Reaching definition analysis”, in Reasoning About Program Transformations: Im-
perative Programming and Flow of Data, J.-F. Collard, Ed. New York, NY: Springer
New York, 2003, pp. 77–122, isbn: 978-0-387-22461-9. doi: 10.1007/978-0-
387-22461-9_5. [Online]. Available: https://doi.org/10.1007/978-0-387-
22461-9_5 (page 12).

[25] F. Nielson, H. R. Nielson, and C. Hankin, Principles of Program Analysis. Secaucus,
NJ, USA: Springer-Verlag New York, Inc., 1999, isbn: 3540654100 (pages 12, 17,
20, 69, 70, 73).

[26] https://web.cs.wpi.edu/~kal/PLT/PLT9.4.html (page 12).
[27] B.Meyer. (2019). Soundness and Completeness:With Precision, [Online]. Available:

https://cacm.acm.org/blogs/blog- cacm/236068- soundness- and-

completeness-with-precision/fulltext (visited on 04/20/2019) (page 15).
[28] Y. Yang. (2013). Note for Introduction to Lattice Theory, [Online]. Available: http:

//www.math.ucla.edu/~yy26/works/Lattice%20Talk.pdf (visited on
05/18/2013) (page 17).

[29] J. B. Kam and J. D. Ullman, “Monotone data flow analysis frameworks”, Acta Inf.,
vol. 7, no. 3, pp. 305–317, Sep. 1977, issn: 0001-5903. doi: 10.1007/BF00290339.
[Online]. Available: http://dx.doi.org/10.1007/BF00290339 (pages 18, 20).

[30] A. Platzer. (2010). Lecture Notes on Monotone Frameworks and Abstract Interpre-
tation, [Online]. Available: https://www.cs.cmu.edu/~aplatzer/course/
Compilers/27-monframework.pdf (visited on 11/30/2010) (pages 19, 20).

[31] M. D. Ernst, “Static and dynamic analysis: Synergy and duality”, in IN WODA 2003:
ICSE WORKSHOP ON DYNAMIC ANALYSIS, 2003, pp. 24–27 (page 21).

https://doi.org/10.1145/800028.808479
https://doi.org/10.1145/800028.808479
http://doi.acm.org/10.1145/800028.808479
http://doi.acm.org/10.1145/800028.808479
https://doi.org/10.1007/978-0-387-22461-9_5
https://doi.org/10.1007/978-0-387-22461-9_5
https://doi.org/10.1007/978-0-387-22461-9_5
https://doi.org/10.1007/978-0-387-22461-9_5
https://web.cs.wpi.edu/~kal/PLT/PLT9.4.html
https://cacm.acm.org/blogs/blog-cacm/236068-soundness-and-completeness-with-precision/fulltext
https://cacm.acm.org/blogs/blog-cacm/236068-soundness-and-completeness-with-precision/fulltext
http://www.math.ucla.edu/~yy26/works/Lattice%20Talk.pdf
http://www.math.ucla.edu/~yy26/works/Lattice%20Talk.pdf
https://doi.org/10.1007/BF00290339
http://dx.doi.org/10.1007/BF00290339
https://www.cs.cmu.edu/~aplatzer/course/Compilers/27-monframework.pdf
https://www.cs.cmu.edu/~aplatzer/course/Compilers/27-monframework.pdf

BIBLIOGRAPHY 147

[32] T. Ball, “The concept of dynamic analysis”, SIGSOFT Softw. Eng. Notes, vol. 24,
no. 6, pp. 216–234, Oct. 1999, issn: 0163-5948. doi: 10.1145/318774.318944.
[Online]. Available: http://doi.acm.org/10.1145/318774.318944 (page 22).

[33] J. R. Larus and T. Ball, “Rewriting executable files to measure program behavior”,
Software Practice and Experience, vol. 24, pp. 197–218, 1994 (page 22).

[34] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.
Reddi, and K. Hazelwood, “Pin: Building customized program analysis tools with
dynamic instrumentation”, in Proceedings of the 2005 ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI ’05, Chicago, IL,
USA: ACM, 2005, pp. 190–200, isbn: 1-59593-056-6. doi: 10.1145/1065010.
1065034. [Online]. Available: http://doi.acm.org/10.1145/1065010.
1065034 (pages 22, 23, 97).

[35] N. Nethercote and J. Seward, “Valgrind: A framework for heavyweight dynamic
binary instrumentation”, in Proceedings of the 28th ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI ’07, San Diego,
California, USA: ACM, 2007, pp. 89–100, isbn: 978-1-59593-633-2. doi: 10.1145/
1250734.1250746. [Online]. Available: http://doi.acm.org/10.1145/
1250734.1250746 (page 22).

[36] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong program
analysis and transformation”, in Code Generation and Optimization, 2004. CGO
2004. International Symposium on, IEEE, 2004, pp. 75–86 (page 22).

[37] E. Kuleshov, Using the asm framework to implement common java bytecode trans-
formation patterns, 2007 (page 22).

[38] S. Chiba and M. Nishizawa, “An easy-to-use toolkit for efficient java bytecode trans-
lators”, inGenerative Programming and Component Engineering, F. Pfenning and Y.
Smaragdakis, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 364–
376, isbn: 978-3-540-39815-8 (page 22).

[39] A. Commons, “Bcel: Byte code engineering library”, [Online]. Available: https:
//commons.apache.org/proper/commons-bcel/index.html (pages 22, 57).

[40] ARM. (2019). Arm documentation, [Online]. Available: http://infocenter.
arm.com/help/index.jsp?topic=/com.arm.doc.ddi0222b/ch01s01s01.

html (visited on 05/03/2019) (page 24).
[41] T. Ball and J. R. Larus, “Branch prediction for free”, in Proceedings of the ACM

SIGPLAN 1993 Conference on Programming Language Design and Implementation,
ser. PLDI ’93, Albuquerque, New Mexico, USA: ACM, 1993, pp. 300–313, isbn:
0-89791-598-4. doi: 10.1145/155090.155119. [Online]. Available: http://doi.
acm.org/10.1145/155090.155119 (page 25).

https://doi.org/10.1145/318774.318944
http://doi.acm.org/10.1145/318774.318944
https://doi.org/10.1145/1065010.1065034
https://doi.org/10.1145/1065010.1065034
http://doi.acm.org/10.1145/1065010.1065034
http://doi.acm.org/10.1145/1065010.1065034
https://doi.org/10.1145/1250734.1250746
https://doi.org/10.1145/1250734.1250746
http://doi.acm.org/10.1145/1250734.1250746
http://doi.acm.org/10.1145/1250734.1250746
https://commons.apache.org/proper/commons-bcel/index.html
https://commons.apache.org/proper/commons-bcel/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0222b/ch01s01s01.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0222b/ch01s01s01.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0222b/ch01s01s01.html
https://doi.org/10.1145/155090.155119
http://doi.acm.org/10.1145/155090.155119
http://doi.acm.org/10.1145/155090.155119

BIBLIOGRAPHY 148

[42] M. Chang and Y. Chou, “Branch prediction using both global and local branch history
information”, IEE Proceedings - Computers and Digital Techniques, vol. 149, no. 2,
pp. 33–38, 2002, issn: 1350-2387. doi: 10.1049/ip-cdt:20020273 (page 25).

[43] D.A. Jiménez andC. Lin, “Dynamic branch predictionwith perceptrons”, inProceed-
ings of the 7th International Symposium on High-Performance Computer Architec-
ture, ser. HPCA ’01,Washington, DC, USA: IEEEComputer Society, 2001, pp. 197–,
isbn: 0-7695-1019-1. [Online]. Available: http://dl.acm.org/citation.cfm?
id=580550.876441 (page 25).

[44] A. Seznec, S. Felix, V. Krishnan, and Y. Sazeides, “Design tradeoffs for the alpha ev8
conditional branch predictor”, in Proceedings 29th Annual International Symposium
on Computer Architecture, 2002, pp. 295–306. doi: 10.1109/ISCA.2002.1003587
(page 26).

[45] M. H. Lipasti, C. B. Wilkerson, and J. P. Shen, “Value locality and load value
prediction”, SIGPLAN Not., vol. 31, no. 9, pp. 138–147, Sep. 1996, issn: 0362-1340.
doi: 10.1145/248209.237173. [Online]. Available: http://doi.acm.org/10.
1145/248209.237173 (pages 27, 39).

[46] M.Rinard, “Probabilistic accuracy bounds for fault-tolerant computations that discard
tasks”, in Proceedings of ICS’06, ser. ICS ’06, Cairns, Queensland, Australia: ACM,
2006, pp. 324–334, isbn: 1-59593-282-8. doi: 10.1145/1183401.1183447. [On-
line]. Available: http://doi.acm.org/10.1145/1183401.1183447 (page 29).

[47] M. C. Rinard and M. S. Lam, “The design, implementation, and evaluation of jade”,
ACM Trans. Program. Lang. Syst., vol. 20, no. 3, pp. 483–545, May 1998, issn:
0164-0925. doi: 10.1145/291889.291893. [Online]. Available: http://doi.
acm.org/10.1145/291889.291893 (page 29).

[48] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and D. Grossman,
“Enerj: Approximate data types for safe and general low-power computation”, SIG-
PLAN Not., vol. 46, no. 6, pp. 164–174, Jun. 2011, issn: 0362-1340. doi: 10.
1145/1993316.1993518. [Online]. Available: http://doi.acm.org/10.1145/
1993316.1993518 (pages 30, 34, 40, 44, 71).

[49] P. Roy, R. Ray, C. Wang, and W. F. Wong, “Asac: Automatic sensitivity analysis for
approximate computing”, in Proceedings of the 2014 SIGPLAN/SIGBEDConference
on Languages, Compilers and Tools for Embedded Systems, ser. LCTES ’14, Edin-
burgh, United Kingdom: ACM, 2014, pp. 95–104, isbn: 978-1-4503-2877-7. doi:
10.1145/2597809.2597812. [Online]. Available: http://doi.acm.org/10.
1145/2597809.2597812 (pages 32, 34).

[50] R. E. Rodrigues, V. H. Sperle Campos, and F. M. Quintão Pereira, “A fast and low-
overhead technique to secure programs against integer overflows”, in Proceedings of

https://doi.org/10.1049/ip-cdt:20020273
http://dl.acm.org/citation.cfm?id=580550.876441
http://dl.acm.org/citation.cfm?id=580550.876441
https://doi.org/10.1109/ISCA.2002.1003587
https://doi.org/10.1145/248209.237173
http://doi.acm.org/10.1145/248209.237173
http://doi.acm.org/10.1145/248209.237173
https://doi.org/10.1145/1183401.1183447
http://doi.acm.org/10.1145/1183401.1183447
https://doi.org/10.1145/291889.291893
http://doi.acm.org/10.1145/291889.291893
http://doi.acm.org/10.1145/291889.291893
https://doi.org/10.1145/1993316.1993518
https://doi.org/10.1145/1993316.1993518
http://doi.acm.org/10.1145/1993316.1993518
http://doi.acm.org/10.1145/1993316.1993518
https://doi.org/10.1145/2597809.2597812
http://doi.acm.org/10.1145/2597809.2597812
http://doi.acm.org/10.1145/2597809.2597812

BIBLIOGRAPHY 149

the 2013 IEEE/ACM International Symposium on Code Generation and Optimization
(CGO), 2013, pp. 1–11. doi: 10.1109/CGO.2013.6494996 (page 32).

[51] M. D. McKay, R. J. Beckman, and W. J. Conover, “A comparison of three methods
for selecting values of input variables in the analysis of output from a computer
code”, Technometrics, vol. 21, no. 2, pp. 239–245, 1979, issn: 00401706. [Online].
Available: http://www.jstor.org/stable/1268522 (page 33).

[52] S. K. Palaniappan, B. M. Gyori, B. Liu, D. Hsu, and P. S. Thiagarajan, “Statistical
model checking based calibration and analysis of bio-pathway models”, in Compu-
tational Methods in Systems Biology, A. Gupta and T. A. Henzinger, Eds., Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 120–134, isbn: 978-3-642-40708-
6 (page 33).

[53] M. Carbin and M. C. Rinard, “Automatically identifying critical input regions and
code in applications”, in Proceedings of ISSTA’10, ACM, 2010, pp. 37–48 (pages 34,
44).

[54] W. H. E. Day and H. Edelsbrunner, “Efficient algorithms for agglomerative hi-
erarchical clustering methods”, Journal of Classification, vol. 1, no. 1, pp. 7–24,
1984, issn: 1432-1343. doi: 10.1007/BF01890115. [Online]. Available: https:
//doi.org/10.1007/BF01890115 (pages 35, 36).

[55] V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan, “Analysis and char-
acterization of inherent application resilience for approximate computing”, in The
50th Annual Design Automation Conference 2013, DAC ’13, Austin, TX, USA, May
29 - June 07, 2013, ACM, 2013, 113:1–113:9, isbn: 978-1-4503-2071-9. doi: 10.
1145/2463209.2488873. [Online]. Available: http://doi.acm.org/10.1145/
2463209.2488873 (pages 36, 44).

[56] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. Rinard, “Managing
performance vs. accuracy trade-offswith loop perforation”, inProceedings of FSE’11,
ser. ESEC/FSE ’11, Szeged, Hungary: ACM, 2011, pp. 124–134, isbn: 978-1-4503-
0443-6. doi: 10.1145/2025113.2025133. [Online]. Available: http://doi.acm.
org/10.1145/2025113.2025133 (pages 37, 90).

[57] J. S. Miguel, M. Badr, and N. E. Jerger, “Load value approximation”, in 2014 47th
Annual IEEE/ACM International Symposium on Microarchitecture, 2014, pp. 127–
139. doi: 10.1109/MICRO.2014.22 (page 39).

[58] A. Yazdanbakhsh, B. Thwaites, H. Esmaeilzadeh, G. Pekhimenko, O.Mutlu, and T. C.
Mowry, “Mitigating the memory bottleneck with approximate load value prediction”,
IEEE Design Test, vol. 33, no. 1, pp. 32–42, 2016, issn: 2168-2356. doi: 10.1109/
MDAT.2015.2504899 (pages 39, 40).

[59] L. Ceze, K. Strauss, J. Tuck, J. Torrellas, and J. Renau, “Cava: Using checkpoint-
assisted value prediction to hide l2 misses”, ACM Trans. Archit. Code Optim., vol. 3,

https://doi.org/10.1109/CGO.2013.6494996
http://www.jstor.org/stable/1268522
https://doi.org/10.1007/BF01890115
https://doi.org/10.1007/BF01890115
https://doi.org/10.1007/BF01890115
https://doi.org/10.1145/2463209.2488873
https://doi.org/10.1145/2463209.2488873
http://doi.acm.org/10.1145/2463209.2488873
http://doi.acm.org/10.1145/2463209.2488873
https://doi.org/10.1145/2025113.2025133
http://doi.acm.org/10.1145/2025113.2025133
http://doi.acm.org/10.1145/2025113.2025133
https://doi.org/10.1109/MICRO.2014.22
https://doi.org/10.1109/MDAT.2015.2504899
https://doi.org/10.1109/MDAT.2015.2504899

BIBLIOGRAPHY 150

no. 2, pp. 182–208, Jun. 2006, issn: 1544-3566. doi: 10.1145/1138035.1138038.
[Online]. Available: http : / / doi . acm . org / 10 . 1145 / 1138035 . 1138038
(page 39).

[60] F. G. et. al., Speculative execution based on value prediction. Technion-IIT, 1996
(page 39).

[61] S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco, “Gpus and
the future of parallel computing”, IEEE Micro, vol. 31, no. 5, pp. 7–17, 2011, issn:
0272-1732. doi: 10.1109/MM.2011.89 (page 40).

[62] G. Pekhimenko, E.Bolotin,N.Vijaykumar,O.Mutlu, T.C.Mowry, andS.W.Keckler,
“A case for toggle-aware compression for gpu systems”, in 2016 IEEE International
Symposium on High Performance Computer Architecture (HPCA), 2016, pp. 188–
200. doi: 10.1109/HPCA.2016.7446064 (page 40).

[63] M. Burtscher and B. G. Zorn, “Hybrid load-value predictors”, IEEE Transactions on
Computers, vol. 51, no. 7, pp. 759–774, 2002, issn: 0018-9340. doi: 10.1109/TC.
2002.1017696 (page 41).

[64] Y. Sazeides and J. E. Smith, “The predictability of data values”, in Proceedings of the
30th Annual ACM/IEEE International Symposium onMicroarchitecture, ser. MICRO
30, Research Triangle Park, North Carolina, USA: IEEE Computer Society, 1997,
pp. 248–258, isbn: 0-8186-7977-8. [Online]. Available: http://dl.acm.org/
citation.cfm?id=266800.266824 (page 41).

[65] P. V. Rengasamy, A. Sivasubramaniam, M. T. Kandemir, and C. R. Das, “Exploiting
staleness for approximating loads on cmps”, in 2015 International Conference on
Parallel Architecture and Compilation (PACT), 2015, pp. 343–354. doi: 10.1109/
PACT.2015.27 (pages 42, 131, 134).

[66] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hennessy,
“Memory consistency and event ordering in scalable shared-memory multiproces-
sors”, SIGARCH Comput. Archit. News, vol. 18, no. 2SI, pp. 15–26, May 1990,
issn: 0163-5964. doi: 10 . 1145 / 325096 . 325102. [Online]. Available: http :
//doi.acm.org/10.1145/325096.325102 (page 42).

[67] B. Nongpoh, R. Ray, S. Dutta, and A. Banerjee, “Autosense: A framework for au-
tomated sensitivity analysis of program data”, IEEE Trans. Software Eng., vol. 43,
no. 12, pp. 1110–1124, 2017. doi: 10.1109/TSE.2017.2654251. [Online]. Avail-
able: https://doi.org/10.1109/TSE.2017.2654251 (pages 43, 68, 90).

[68] M. Carbin, S. Misailovic, and M. C. Rinard, “Verifying quantitative reliability for
programs that execute on unreliable hardware”, in ACM SIGPLAN Notices, ACM,
vol. 48, 2013, pp. 33–52 (page 44).

[69] P. Roy, R. Ray, C. Wang, and W. F. Wong, “Asac: Automatic sensitivity analysis
for approximate computing”, SIGPLAN Not., vol. 49, no. 5, pp. 95–104, Jun. 2014,

https://doi.org/10.1145/1138035.1138038
http://doi.acm.org/10.1145/1138035.1138038
https://doi.org/10.1109/MM.2011.89
https://doi.org/10.1109/HPCA.2016.7446064
https://doi.org/10.1109/TC.2002.1017696
https://doi.org/10.1109/TC.2002.1017696
http://dl.acm.org/citation.cfm?id=266800.266824
http://dl.acm.org/citation.cfm?id=266800.266824
https://doi.org/10.1109/PACT.2015.27
https://doi.org/10.1109/PACT.2015.27
https://doi.org/10.1145/325096.325102
http://doi.acm.org/10.1145/325096.325102
http://doi.acm.org/10.1145/325096.325102
https://doi.org/10.1109/TSE.2017.2654251
https://doi.org/10.1109/TSE.2017.2654251

BIBLIOGRAPHY 151

issn: 0362-1340. doi: 10.1145/2666357.2597812. [Online]. Available: http:
//doi.acm.org/10.1145/2666357.2597812 (pages 44, 63).

[70] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and D. Grossman,
“Enerj: Approximate data types for safe and general low-power computation”, in
Proceedings of the 32Nd ACM SIGPLAN Conference on Programming Language
Design and Implementation, ser. PLDI ’11, San Jose, California, USA: ACM, 2011,
pp. 164–174, isbn: 978-1-4503-0663-8. doi: 10.1145/1993498.1993518. [On-
line]. Available: http://doi.acm.org/10.1145/1993498.1993518 (pages 44,
60, 64, 65).

[71] R. Pozo and B. Miller, Scimark 2.0. [Online]. Available: http://math.nist.gov/
scimark2/ (pages 44, 58, 59).

[72] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural acceleration for
general-purpose approximate programs”, in MICRO 2012, Canada, December 1-5,
2012, IEEE Computer Society, 2012, pp. 449–460, isbn: 978-1-4673-4819-5. doi:
10.1109/MICRO.2012.48. [Online]. Available: http://dx.doi.org/10.1109/
MICRO.2012.48 (pages 44, 58, 59, 101).

[73] W.-F. Wong, P. Roy, R. Ray, and N.-M. Ho, “Compilation and other software tech-
niques enabling approximate computing”, in Approximate Circuits: Methodologies
and CAD, S. Reda and M. Shafique, Eds. Cham: Springer International Publishing,
2019, pp. 443–463, isbn: 978-3-319-99322-5. doi: 10.1007/978-3-319-99322-
5_22. [Online]. Available: https://doi.org/10.1007/978-3-319-99322-
5_22 (pages 45, 46).

[74] A. Sampson. (2015). Hardware and Software for Approximate Computing, [Online].
Available: https://homes.cs.washington.edu/~djg/theses/sampson_
thesis.pdf (visited on 01/01/2010) (page 46).

[75] A. Saltelli, S. Tarantola, F. Campolongo, and M. Ratto, Sensitivity Analysis in Prac-
tice: A Guide to Assessing Scientific Models. New York, NY, USA: Halsted Press,
2004, isbn: 0470870931 (page 46).

[76] Q. Lu, M. Farahani, J. Wei, A. Thomas, and K. Pattabiraman, “LLFI: an intermedi-
ate code-level fault injection tool for hardware faults”, in 2015 IEEE International
Conference on Software Quality, Reliability and Security, QRS 2015, Vancouver, BC,
Canada, August 3-5, 2015, IEEE, 2015, pp. 11–16, isbn: 978-1-4673-7989-2. doi:
10.1109/QRS.2015.13. [Online]. Available: http://dx.doi.org/10.1109/
QRS.2015.13 (page 50).

[77] C. Lattner and V. Adve, “LLVM: A Compilation Framework for Lifelong Program
Analysis and Transformation”, in Proceedings of CGO’04), Palo Alto, California,
2004 (page 50).

https://doi.org/10.1145/2666357.2597812
http://doi.acm.org/10.1145/2666357.2597812
http://doi.acm.org/10.1145/2666357.2597812
https://doi.org/10.1145/1993498.1993518
http://doi.acm.org/10.1145/1993498.1993518
http://math.nist.gov/scimark2/
http://math.nist.gov/scimark2/
https://doi.org/10.1109/MICRO.2012.48
http://dx.doi.org/10.1109/MICRO.2012.48
http://dx.doi.org/10.1109/MICRO.2012.48
https://doi.org/10.1007/978-3-319-99322-5_22
https://doi.org/10.1007/978-3-319-99322-5_22
https://doi.org/10.1007/978-3-319-99322-5_22
https://doi.org/10.1007/978-3-319-99322-5_22
https://homes.cs.washington.edu/~djg/theses/sampson_thesis.pdf
https://homes.cs.washington.edu/~djg/theses/sampson_thesis.pdf
https://doi.org/10.1109/QRS.2015.13
http://dx.doi.org/10.1109/QRS.2015.13
http://dx.doi.org/10.1109/QRS.2015.13

BIBLIOGRAPHY 152

[78] H. L. S. Younes, “Verification and planning for stochastic processes with asyn-
chronous events”, PhD thesis, Computer Science Department, Carnegie Mellon Uni-
versity, Pittsburgh, Pennsylvania., 2005 (pages 50, 52, 53, 61).

[79] H. L. S. Younes and R. G. Simmons, “Probabilistic verification of discrete event
systems using acceptance sampling”, in In Proc. of CAV’02, volume 2404 of LNCS,
Springer, 2002, pp. 223–235 (pages 50, 81).

[80] E. W. Weisstein, “Hypothesis testing. from mathworld–a wolfram web resource.”,
URL http://mathworld.wolfram.com/HypothesisTesting.html, (page 50).

[81] W. Feller, An Introduction to Probability Theory and Its Applications. Wiley, 1968,
vol. 1, isbn: 0471257087. [Online]. Available: http://www.amazon.ca/exec/
obidos / redirect ? tag = citeulike04 - 20{and } path = ASIN / 0471257087

(pages 50, 86).
[82] E. L. Lehmann and J. P. Romano, Testing Statistical Hypotheses. Springer-Verlag New

York, 2005, isbn: 978-0-387-98864-1. doi: 10.1007/0-387-27605-X (page 52).
[83] A. Legay, B. Delahaye, and S. Bensalem, “Statistical model checking: An overview”,

in RV 2010, 2010, pp. 122–135. doi: 10.1007/978-3-642-16612-9_11. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-16612-9_11 (page 53).

[84] “Java instrumentation library”,URLhttp://docs.oracle.com/javase/7/docs/api/java/lang/in-
strument/package-summary.html, (page 57).

[85] J. Korhonen and J. You, “Peak signal-to-noise ratio revisited: Is simple beautiful?”,
in 2012 Fourth International Workshop on Quality of Multimedia Experience, 2012,
pp. 37–38. doi: 10.1109/QoMEX.2012.6263880 (page 60).

[86] A. Askarov and A. Myers, “A semantic framework for declassification and endorse-
ment”, ser. ESOP’10, Paphos, Cyprus: Springer-Verlag, 2010, pp. 64–84, isbn: 3-642-
11956-5, 978-3-642-11956-9. doi: 10.1007/978-3-642-11957-6_5. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-11957-6_5 (page 70).

[87] B. Nongpoh, R. Ray, M. Das, and A. Banerjee, “Enhancing speculative execution
with selective approximate computing”, ACM Trans. Des. Autom. Electron. Syst.,
vol. 24, no. 2, 26:1–26:29, Feb. 2019, issn: 1084-4309. doi: 10.1145/3307651.
[Online]. Available: http://doi.acm.org/10.1145/3307651 (page 79).

[88] B. R. Rau et al., “Instruction-level parallel processing: History, overview, and per-
spective”, The journal of Supercomputing, vol. 7, no. 1-2, pp. 9–50, 1993 (page 80).

[89] W.A.Wulf and S. A.McKee, “Hitting thememorywall: Implications of the obvious”,
SIGARCH Comput. Archit. News, vol. 23, no. 1, pp. 20–24, Mar. 1995, issn: 0163-
5964. doi: 10.1145/216585.216588. [Online]. Available: http://doi.acm.
org/10.1145/216585.216588 (page 80).

[90] J. González and A. González, “Speculative execution via address prediction and data
prefetching”, in ICS, 1997, pp. 196–203, isbn: 0-89791-902-5 (page 80).

http://www.amazon.ca/exec/obidos/redirect?tag=citeulike04-20{and}path=ASIN/0471257087
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike04-20{and}path=ASIN/0471257087
https://doi.org/10.1007/0-387-27605-X
https://doi.org/10.1007/978-3-642-16612-9_11
http://dx.doi.org/10.1007/978-3-642-16612-9_11
https://doi.org/10.1109/QoMEX.2012.6263880
https://doi.org/10.1007/978-3-642-11957-6_5
http://dx.doi.org/10.1007/978-3-642-11957-6_5
https://doi.org/10.1145/3307651
http://doi.acm.org/10.1145/3307651
https://doi.org/10.1145/216585.216588
http://doi.acm.org/10.1145/216585.216588
http://doi.acm.org/10.1145/216585.216588

BIBLIOGRAPHY 153

[91] D. I. August et al., “Integrated predicated and speculative execution in the impact
epic architecture”, in ISCA, 1998, pp. 227–237, isbn: 0-8186-8491-7 (page 80).

[92] A. Mendelson and F. Gabbay, “Speculative execution based on value prediction”,
EE Department TR 1080, Technion - Israel Institue of Technology, Tech. Rep., 1996
(page 80).

[93] M. H. Lipasti et al., “Value locality and load value prediction”, ACM SIGPLAN
Notices, vol. 31, no. 9, pp. 138–147, 1996 (page 80).

[94] A. N. Eden et al., “The yags branch prediction scheme”, inMICRO, 1998, pp. 69–77,
isbn: 1-58113-016-3 (page 80).

[95] I.-C. K. Chen et al., “Instruction prefetching using branch prediction information”,
in ICCD, 1997, pp. 593–601 (page 80).

[96] G. S. Tyson, “The effects of predicated execution on branch prediction”, in MICRO,
1994, pp. 196–206 (page 80).

[97] T. E. Carlson, W. Heirman, S. Eyerman, I. Hur, and L. Eeckhout, “An evaluation of
high-level mechanistic core models”, ACM Transactions on Architecture and Code
Optimization (TACO), 2014, issn: 1544-3566. doi: 10.1145/2629677 (pages 82,
97).

[98] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark suite: Charac-
terization and architectural implications”, in Proceedings of the 17th International
Conference on Parallel Architectures and Compilation Techniques, ser. PACT ’08,
Toronto, Ontario, Canada: ACM, 2008, pp. 72–81, isbn: 978-1-60558-282-5. doi:
10.1145/1454115.1454128. [Online]. Available: http://doi.acm.org/10.
1145/1454115.1454128 (pages 82, 101, 108).

[99] A. Sampson, A. Baixo, B. Ransford, T. Moreau, J. Yip, L. Ceze, and M. Oskin,
“Accept: A programmer-guided compiler framework for practical approximate com-
puting”, 2015 (pages 83, 85, 101).

[100] Z.Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment:
From error visibility to structural similarity”, IEEE Transactions on Image Process-
ing, vol. 13, no. 4, pp. 600–612, 2004, issn: 1057-7149. doi: 10.1109/TIP.2003.
819861 (pages 83, 102).

[101] N.Kanopoulos, N.Vasanthavada, andR. L. Baker, “Design of an image edge detection
filter using the sobel operator”, IEEE Journal of Solid-State Circuits, vol. 23, no. 2,
pp. 358–367, 1988, issn: 0018-9200. doi: 10.1109/4.996 (page 85).

[102] V. K. Rohatgi and A. M. E. Saleh, An introduction to probability and statistics. John
Wiley and Sons, 2015 (page 89).

[103] N. Wang et al., “Y-branches: When you come to a fork in the road, take it”, in PACT,
2003, pp. 56–66 (page 90).

https://doi.org/10.1145/2629677
https://doi.org/10.1145/1454115.1454128
http://doi.acm.org/10.1145/1454115.1454128
http://doi.acm.org/10.1145/1454115.1454128
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/4.996

BIBLIOGRAPHY 154

[104] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 2nd ed.
Pearson Education, 2003, isbn: 0137903952 (page 92).

[105] R. Y. Rubinstein andD. P. Kroese, Simulation and theMonte CarloMethod (Wiley Se-
ries in Probability and Statistics), 2nd ed. 2007, isbn: 0470177942, 9780470177945
(page 93).

[106] T. Lengauer andR. E. Tarjan, “A fast algorithm for finding dominators in a flowgraph”,
ACM Trans. Program. Lang. Syst., vol. 1, no. 1, pp. 121–141, Jan. 1979, issn: 0164-
0925. doi: 10.1145/357062.357071. [Online]. Available: http://doi.acm.
org/10.1145/357062.357071 (page 94).

[107] J Seward et al., Cachegrind: A cache-miss profiler, 2004 (page 97).
[108] J. L. Hennessy et al.,Computer architecture: A quantitative approach, 2011 (page 97).
[109] A. Yazdanbakhsh, G. Pekhimenko, B. Thwaites, H. Esmaeilzadeh, O. Mutlu, and

T. C. Mowry, “Rfvp: Rollback-free value prediction with safe-to-approximate loads”,
ACM Trans. Archit. Code Optim., vol. 12, no. 4, 62:1–62:26, Jan. 2016, issn: 1544-
3566. doi: 10.1145/2836168. [Online]. Available: http://doi.acm.org/10.
1145/2836168 (pages 98, 106).

[110] S. Li et al., “Mcpat: An integrated power, area, and timing modeling framework
for multicore and manycore architectures”, in MICRO, 2009, pp. 469–480, isbn:
978-1-60558-798-1 (page 106).

[111] L. Lamport, “How to make a multiprocessor computer that correctly executes mul-
tiprocess programs”, IEEE Trans. Comput., vol. 28, no. 9, pp. 690–691, Sep. 1979,
issn: 0018-9340. doi: 10.1109/TC.1979.1675439. [Online]. Available: https:
//doi.org/10.1109/TC.1979.1675439 (page 114).

[112] J. Huang, “Scalable thread sharing analysis”, in 2016 IEEE/ACM 38th International
Conference on Software Engineering (ICSE), 2016, pp. 1097–1108. doi: 10.1145/
2884781.2884811 (pages 114, 123, 124).

[113] J.-D. Choi, M. Gupta, M. Serrano, V. C. Sreedhar, and S. Midkiff, “Escape analysis
for java”, Acm Sigplan Notices, vol. 34, no. 10, pp. 1–19, 1999 (page 116).

[114] J. Whaley and M. Rinard, “Compositional pointer and escape analysis for java pro-
grams”, ACM Sigplan Notices, vol. 34, no. 10, pp. 187–206, 1999 (page 116).

[115] B. Nongpoh, R. Ray, S. Dutta, and A. Banerjee, “Autosense: A framework for au-
tomated sensitivity analysis of program data”, IEEE Transactions on Software Engi-
neering, vol. 43, no. 12, pp. 1110–1124, 2017, issn: 0098-5589. doi: 10.1109/TSE.
2017.2654251 (page 116).

[116] J. L. Hennessy and D. A. Patterson, Computer Architecture, Fifth Edition: A Quan-
titative Approach, 5th. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
2011, isbn: 012383872X, 9780123838728 (page 117).

https://doi.org/10.1145/357062.357071
http://doi.acm.org/10.1145/357062.357071
http://doi.acm.org/10.1145/357062.357071
https://doi.org/10.1145/2836168
http://doi.acm.org/10.1145/2836168
http://doi.acm.org/10.1145/2836168
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1145/2884781.2884811
https://doi.org/10.1145/2884781.2884811
https://doi.org/10.1109/TSE.2017.2654251
https://doi.org/10.1109/TSE.2017.2654251

BIBLIOGRAPHY 155

[117] D. J. Sorin, M. D. Hill, and D. A. Wood, A Primer on Memory Consistency and
Cache Coherence, 1st. Morgan and Claypool Publishers, 2011, isbn: 1608455645,
9781608455645 (pages 117, 119).

[118] M. Thomadakis, “The architecture of the nehalem processor and nehalem-ep smp
platforms”, JFE Technical Report, Mar. 2011 (page 118).

[119] M. M. K. Martin, M. D. Hill, and D. J. Sorin, “Why on-chip cache coherence is here
to stay”, Commun. ACM, vol. 55, no. 7, pp. 78–89, Jul. 2012, issn: 0001-0782. doi:
10.1145/2209249.2209269. [Online]. Available: http://doi.acm.org/10.
1145/2209249.2209269 (page 118).

[120] C. Sakalis, C. Leonardsson, S. Kaxiras, and A. Ros, “Splash-3: A properly synchro-
nized benchmark suite for contemporary research”, in 2016 IEEE International Sym-
posium on Performance Analysis of Systems and Software (ISPASS), 2016, pp. 101–
111. doi: 10.1109/ISPASS.2016.7482078 (page 132).

[121] J. P. Singh, W. Weber, and A. Gupta, “Splash: Stanford parallel applications for
shared-memory*”, Stanford, CA, USA, Tech. Rep., 1992 (page 132).

[122] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The splash-2 pro-
grams: Characterization and methodological considerations”, in Proceedings of the
22Nd Annual International Symposium on Computer Architecture, ser. ISCA ’95,
S. Margherita Ligure, Italy: ACM, 1995, pp. 24–36, isbn: 0-89791-698-0. doi:
10.1145/223982.223990. [Online]. Available: http://doi.acm.org/10.
1145/223982.223990 (page 132).

https://doi.org/10.1145/2209249.2209269
http://doi.acm.org/10.1145/2209249.2209269
http://doi.acm.org/10.1145/2209249.2209269
https://doi.org/10.1109/ISPASS.2016.7482078
https://doi.org/10.1145/223982.223990
http://doi.acm.org/10.1145/223982.223990
http://doi.acm.org/10.1145/223982.223990

	Abstract
	Declaration of Authorship
	Certificate of the Supervisor (s)
	Approval of the Thesis
	Thesis Copyright
	Acknowledgements
	Introduction
	Motivation and Objectives
	Thesis contributions
	Thesis organization

	Background and Related Work
	Statistical Methods
	Program Analysis
	Static Analysis
	Data Flow Analysis
	Data flow analysis with monotone frameworks
	Dynamic Program Analysis

	Speculative Execution in modern processors
	Control Speculation
	Data Speculation

	Related Work
	Software Techniques for Approximate Computing
	Hardware and Software Techniques for Approximate Computing

	Automated Sensitivity Analysis of Program Data Using Dynamic Analysis
	Introduction
	Problem Overview
	Detailed Methodology
	Fault Injection Model
	Solution Methodology
	Acceptance Sampling using Hypothesis Testing
	Sequential Probability Ratio Test
	Overall Approach

	Implementation
	Evaluation
	Applications for Evaluation
	QoS Metric
	Evaluation of Dynamic Sensitivity Analysis
	Experimental comparison with other methods
	Reliability Evaluation
	Summary

	A combined static-dynamic method for sensitivity analysis of program data
	Introduction
	Detailed Methodology
	Static Analysis for Program Data Sensitivity
	Combining Static and Dynamic Analysis

	Evaluation
	Summary

	Improving Runtime Efficiency of Programs using Approximate Computing
	Introduction
	Methodology
	Motivating Example
	Load Instruction
	Branch Instruction

	Overall Approach
	Sensitivity Analysis by Hypothesis Testing
	Cumulative Sensitivity Analysis using Bayesian Networks
	Bayesian Networks
	The Bayesian Network Structure

	Implementation
	Pre-execution analysis
	Architectural Simulation

	Evaluation
	Applications for Evaluation
	QoS Metric
	Evaluation of Sensitivity Analysis by Hypothesis Testing
	Evaluation of Sensitivity Analysis Using Bayesian Networks
	Evaluation of Speculative Execution with Selective Approximation
	Reliability Evaluation of the Bayesian Analysis–Based Method

	Summary

	Approximate Computing for Multithreaded Programs in Shared Memory Architectures
	Introduction
	Motivating Example
	Detailed Methodology
	Cache Coherence for Multicore Processors
	MESI Cache Coherence Protocol
	Our Approach

	Relaxed Cache-Coherence Protocol
	Evaluation
	Applications for Evaluation
	QoS Metrics
	Evaluation of Sensitivity Analysis
	Performance Evaluation

	Summary

	Conclusion and Future Directions
	Publications
	List of Publications
	Awards and Recognition

	Bibliography

