AutoSense: A Framework for Automated Sensitivity Analysis of Program Data Bernard Nongpoh¹, Rajarshi Ray¹, Saikat Dutta², Ansuman Banerjee³

Department of Computer Science & Engineering, National Institute of Technology Meghalaya, Shillong, India. ² Department of Computer Science & Engineering, Jadavpur University, Kolkata, India. ³ Advanced Computing and Microelectronics Unit, Indian Statistical Institute, Kolkata, India.

Sensitivity Analysis: A Motivating Example

bool binsearch (int lo, int hi)

```
unsigned int size = hi-lo + 1;
  unsigned int mid = (10+hi)/2;
  if (lo>hi) return false;
  if (size >= 1){
      if (a[mid] == key) return true;
      else if (a[mid]>key)
       return binsearch (lo, mid-1);
else return binsearch(mid+1, hi);
```

return false;

Insensitive Sensitive

Sequential Probability Ratio Test

• SPRT is to decide whether additional experiments need to be performed to accept or reject a hypothesis on the basis of the previously observed outcomes.

Limitation of Dynamic Analysis

• Compute and data intensive programs may take a long time to terminate, making each trial during the hypothesis testing expensive. • Generating random inputs for many applications can be challenging.

Static-Dynamic Combined Analysis

The elements of the complete lattice L of our analysis are mappings

Evaluation of Dynamic Sensitivity Analysis

Any inexact value that size may take other than 0, the binary search procedure will return an acceptable output.

Problem

Figure 1: Data classification in approximate computing

Contributions

- A collection of systematic methods for program data classification with quantitative confidence guarantee. The contributions are:
- A Dynamic analysis to automatically classify program data as sensitive or insensitive.
- A Static-Dynamic combined analysis for efficiency.

 $\sigma : \mathcal{D} \to \{\perp, S, I, \top\}$. $\sigma(x) = \perp$ denotes that no information is known about the data x whereas $\sigma(x) = \top$ denotes that x may be *sen*sitive or insensitive. $\sigma(x) = S$ and $\sigma(x) = I$ denotes x to be sensitive and *insensitive* respectively. We define a *data sensitivity lattice* over the range of σ , i.e., $\{\bot, S, I, \top\}$

The partial order on σ is defined :

 $\forall \sigma : \bot \sqsubseteq \sigma$ (3) $\forall \sigma_1, \sigma_2 : \sigma_1 \sqsubseteq \sigma_2 \text{ iff } \forall x, \sigma_1(x) \sqsubseteq_D \sigma_2(x).$

where $\bot \in \sigma$ maps every $x \in \mathcal{D}$ to \bot , \sqsubseteq denotes the partial order relation on σ and \sqsubseteq_D denotes the partial order relation of the *data* sensitivity lattice. The join operation over σ is defined in Eq. 4.

> $(\sigma_1 \sqcup \sigma_2)(x) = \sigma_1(x) \sqcup \sigma_2(x)$ (4)

Considering a general assignment statement block [x := a], a being any expression, we define the transfer functions of our analysis as:

> $\int \sigma(x \to I) \quad \text{if } \forall v \in FV(a), \sigma(v) = I$ $\sigma(x \to S) \quad if \forall v \in FV(a), \sigma(v) = S$

Figure 6: The percent insensitive data reported by a AutoSense on varying QoS γ and fixed probability factor $\theta = 0.5$

Figure 7: The percent insensitive data reported by a AutoSense on varying θ and fixed QoS $\gamma = 0.5$ (scimark2), PSNR=10.5 (raytracer) and exact (jmeint)

Definition: Sensitive Data

Given an acceptable QoS band for a program \mathcal{P} and a sensitivity threshold probability θ , a program data $v \in \mathcal{D}$ is called sensitive if and only if $\forall e \in E$, the probability that the program output remains in the acceptable QoS band when every instance (v_e, l) in e is replaced with some (v_{approx}, ℓ) , is less than θ .

 $\mathcal{SD} = \left\{ v \in \mathcal{D} \mid \forall e \in E, \forall \ell \in \ell_v^e, (v_e, \ell) \to (v_{approx}, \ell) \implies (1) \right\}$ $Pr(\mathcal{R} \in QoS) < \theta$

where $(v_e, \ell) \rightarrow (v_{approx}, \ell)$ means the substitution of (v_{approx}, ℓ) in place of (v_e, ℓ) . The set of *insensitive* data is defined as $\overline{SD} = D - SD$.

Sensitivity Analysis Using Hypothesis Testing

For every $v \in \mathcal{D}$, we propose a hypothesis that $\forall e \in E, \forall \ell \in$ $\ell_v^e, (v_e, \ell) \rightarrow (v_{approx}, \ell) \implies \mathcal{R} \in QoS$, where $E, \ell_v^e, (v_e, \ell)$ and (v_{approx}, ℓ) . Let us denote such an hypothesis by K. Test the following null and contrary hypothesis:

> $H: Pr(K) < \theta$ $H': Pr(K) \ge \theta$

where Pr(K) is the probability that the hypothesis K is true.

Approximate Program	Data Under Test (v)		
		Fault Injector	

```
 \begin{bmatrix} x = a \end{bmatrix} : f(\sigma) = \begin{cases} \sigma(x \to \top) & \text{if } \exists u, v \in FV(a) \\ & \text{s.t. } \sigma(u) = S, \sigma(v) = I \\ \sigma & \text{if } FV(a) = \emptyset \end{cases} 
                                                                                                                                                                                               (5)
          [\cdots]:f(\sigma)=\sigma
```

where $[\cdots]$ is to denote any program statement which is not an assignment statement and FV(a) is the set of all free variables of the expression a.

Example

(2)

```
double average(int N, int a[])
double sum=0;
for(int i=0;i<N;i++)
   sum=sum+a[i];
avg=sum/N; //avg is I as both sum, N are I
return avg;
```

Reliability of Sensitivity Analysis

Figure 8: Number of Trials vs. Confidence θ

Evaluation of Combined Analysis

Figure 9: Performance of Static-dynamic combined vs. Dynamic analysis

Application	TP	FP	FN	Precision (%)	Recall (%)
FFT	0	0	3	0	0

Figure 2: Framework of Dynamic Sensitivity Analysis with Hypothesis Testing

Figure 4: Percent output failing QoS with confidence $\theta = 0.3$ and $\theta = 0.5$

Figure 5: Raytracer rendered image with AutoSense guided approximation

SOR	3	0	0	100	100
MC	1	0	1	100	50
SMM	2	0	0	100	100
LU	0	0	9	0	0
Raytracer	0	1	2	0	0

Table 1: Precision, Recall of the Combined Analysis w.r.t. Dynamic Analysis

Conclusions

• Identifying insensitive data of an application is non-trivial, especially when the application is large and has substantial data and control dependencies.

• Illustrated that a systematic study of the effect of inaccuracy in program data with statistical methods like hypothesis testing can lead to automatic classification of insensitive and sensitive data.