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Multicore Architecture and Approximate Computing

Alternatives to slowing Moore’s law for performance scaling in
microprocessors:

1 Multicore Architecture - many computing cores on-chip.

2 Approximate Computing - trade-off accuracy for performance.
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(a) Multicore Architecture (b) An illustration of
Approximate Computing
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Challenges in Multicore Processors: The Cache-Coherence
Problem
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Figure: An Illustration of the Cache-Coherence Problem
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The Cache-Coherence Problem
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The Cache-Coherence Problem
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The Cache-Coherence Problem
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Resiliency to Coherence Failure: An Example

A multithreaded program with each thread running on a different core.
cnt is shared and tmp is local to each thread.

T-0

 tmp = cnt -3;

lock(mlock);

cnt = cnt + tmp;

unlock(mlock);

T-1

tmp = cnt - 2;

lock(mlock);

cnt = cnt + tmp;

unlock(mlock);

T-2

tmp = cnt - 1;

lock(mlock);

cnt = cnt + tmp;

unlock(mlock);
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(a) Exact execution

T-0

 tmp = cnt -3;

lock(mlock);

cnt = cnt + tmp;

unlock(mlock);

T-1

tmp = cnt - 2;

lock(mlock);

cnt = cnt + tmp;

unlock(mlock);

T-2

tmp = cnt - 1;

lock(mlock);

cnt = cnt + tmp;

unlock(mlock);
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(b) Approximate execution
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Our Contribution

Enhance performance of multi-threaded programs on shared
memory multicore processors by embracing approximate
computing.

We identify write operations on shared data which are tolerant to
coherence faults.
For the fault tolerant memory writes, we propose a modified
cache-coherence protocol with a reduced overhead of communication.
An auxiliary L1-cache structure to reduce coherency-misses.
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Sensitivity Analysis of SWAPs

Definition

Coherence Fault: Let P be a multithreaded program and s be a SWAP in
P writing to a shared data x . Let e be the execution of P on an input I .
A coherence fault in s refers to the execution e ′ on the same input I when
the write of data v into x is not communicated to the sharers of x . �

Definition

Approximable SWAP: Given a confidence of inference θ and an
acceptable QoS distortion measure α, a SWAP s in a multithreaded
program P is said to be approximable iff for all executions e of P, the
probability that the program output remains within the acceptable QoS
distortion α in the presence of a coherence fault in s, is at least θ. �
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Detection of Approximable SWAPs by Hypothesis Testing

Given a SWAP s, we consider the Hypotheses:

H : Pr(X = 1) ≥ θ;H ′ : Pr(X = 1) < θ (1)

Where,

Pr(X = 1) denotes the probability that a coherence fault on the
shared data written by the instruction s keeps the program output
within the acceptable QoS threshold α, and

θ is the user-given confidence of inference.

H and H ′ respectively represent the null and contrary hypothesis.
Note that the verification of the null hypothesis H implies that the
SWAP s under analysis is approximable.
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Directory-Based Cache-Coherence Protocol
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Figure: An Illustration of Directory-based Cache-Coherence Protocol
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The MESI Cache-Coherence Protocol
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Inv-Ack: An acknowledgement of block invalidation

Figure: State Machine of MESI Cache-Coherence Protocol
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Modified MESI Protocol
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Methodology
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Figure: Workflow
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Experimental Setup: Architectural Simulation
Configuration

Parameters Values

Cores 32 cores, Nehalem 2.24GHz

L1 32KB I-Cache, 32KB D-Cache,
32B cache block size, private
per core, 2 way associative, 2
cycles hit latency

L2 64KB per core, 32B cache
block size, 2-way associative,
20 cycles hit latency.

L3 1024KB, 32B cache block size,
8-way associative, S-NUCA,
100 cycles hit latency, MESI
cache coherence protocol

NoC Mesh 4 × 8, 4 Mem-Ctlr

Table: Baseline configuration

Parameters Values

Cores 32 cores, Nehalem 2.24GHz

L1 32KB I-Cache, 32KB D-Cache,
32B cache block size, private
per core, 2 way associative, 2
cycles hit latency

Auxiliary
Cache

256KB, 32B cache block size,8-
way associative, 2 cycles hit la-
tency

L2 64KB per core, 32B cache
block size, 2-way associative,
20 cycles hit latency.

L3 1024KB, 32B cache block size,
8-way associative, S-NUCA,
100 cycles hit latency, Approxi-
mate MESI cache coherence
protocol

NoC Mesh 4 × 8, 4 Mem-Ctlr

Table: Proposed configuration
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Results - Sensitivity Analysis of SWAPs

Table: Sensitivity analysis of SWAPs by hypothesis testing.

Application LoC QoS Metric QoS Tol. SWAPs Tested SWAPs Appr. % Appr. Time (hrs)

FMM 2945 ARE ≤ 0.1 144 9 6.25 50
OCEAN NC 2731 ARE ≤ 0.1 92 63 68.3 15.6
OCEAN C 4283 ARE ≤ 0.1 88 36 40.9 16.6

RAYTRACER 5783 PSNR ≥ 20 156 98 62.8 17
CHOLESKY 3847 PE ≤ 0.1 190 85 44.7 8.10

FFT 668 NME ≤ 0.1 24 19 79.1 0.82
LU NC 494 NME ≤ 0.1 28 20 71.4 0.51
LU C 916 NME ≤ 0.1 27 20 74 0.52

RADIX 654 matching 0 31 21 67.7 0.8
ARE : Average Relative Error; Appr.:Approximable; %Appr. : Percentage of the tested SWAPs inferred
approximable; LoC: Lines of Code; NME : Normalized Mean Error; PE : Percent Error; QoS: Quality
of Service; Tol. : Tolerance

An average of 57% of the tested SWAPs are approximable

On average 12 hrs analysis time.
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Results - Reduced CPU-Cycles and Energy Footprint with
Approximate MESI Protocol
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Figure: CPU-cycles, energy reduction (%) in comparison with baseline execution
(exact)
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Results - Comparison with Related Work
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Figure: CPU-cycles, energy reduction (%) in comparison with the work of P. V.
Rengasamy et.al., Exploiting staleness for approximating loads on CMPs,
PACT’15. [1]
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Results - Reduced Coherence-invalidation and Remote
cache-loads
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Figure: L1-D cache misses, Coherence
invalidation and Remote-cache-load
(%) in comparison with baseline.

On average,

0.26% reduction in L1-D misses

1.45% reduction in invalidation
messages due to coherence and

15.46% reduction in request to
load data messages from
remote caches.
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Conclusion

We present a sensitivity analysis technique for instructions in a
multi-threaded program, in order to determine the ones which are
approximable.

An average of 57% of the tested SWAPs are approximable in the
considered applications from the SPLASH 3.0 applications.

In order to reduce the cost of implementing cache-coherency in a
processor, we propose an approximate cache-coherence protocol that
is invoked on selective write operations.

On an average, our approach shows 15.5% gain in terms of CPU
cycles and 11.5% reduction in energy used.
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Thank You!

Questions?
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