
Approximate Computing for Multithreaded Programs in
Shared Memory Architectures

∗Bernard Nongpoh, †Rajarshi Ray, ‡Ansuman Banerjee

∗National Institute of Technology Meghalaya, Shillong, India
†Indian Association for the Cultivation of Science, Kolkata, India

‡Indian Statistical Institute, Kolkata, India

9 October 2019

MEMOCODE’19 October 9–11, 2019, UCSD, CA, USA 9 October 2019 1 / 23

Outline

1 The Cache-Coherence Problem in Multicore Processors

2 Our Contribution: Approximate Computing by Selective Relaxation in
Cache-Coherency

3 Identification of Resilient SWAPs in a Program

4 Modified MESI Cache-Coherence Protocol

5 Results

6 Conclusion

MEMOCODE’19 October 9–11, 2019, UCSD, CA, USA 9 October 2019 2 / 23

Multicore Architecture and Approximate Computing

Alternatives to slowing Moore’s law for performance scaling in
microprocessors:

1 Multicore Architecture - many computing cores on-chip.

2 Approximate Computing - trade-off accuracy for performance.

Core 0 Core 1 Core 3 Core 4

Core 5 Core 6 Core 7 Core 8

Core 9 Core 10 Core 11 Core 12

Core 13 Core 14 Core 15 Core 16

L2
L1-D

L1-I

Directory

Main Memory

(a) Multicore Architecture (b) An illustration of
Approximate Computing

MEMOCODE’19 October 9–11, 2019, UCSD, CA, USA 9 October 2019 3 / 23

Challenges in Multicore Processors: The Cache-Coherence
Problem

Core 0 Core 1

X: 400

1 Read X

Bus

L1 CacheL1 Cache

Figure: An Illustration of the Cache-Coherence Problem

MEMOCODE’19 October 9–11, 2019, UCSD, CA, USA 9 October 2019 4 / 23

The Cache-Coherence Problem

Core 0 Core 1

X: 400

1 Read X

Bus

L1 CacheL1 Cache

X: 400

2 Read X

Figure: An Illustration of the Cache-Coherence Problem

MEMOCODE’19 October 9–11, 2019, UCSD, CA, USA 9 October 2019 5 / 23

The Cache-Coherence Problem

Core 0 Core 1

X: 400

1 Read X

Bus

L1 CacheL1 Cache

X: 500

2 Read X
3Write X

Figure: An Illustration of the Cache-Coherence Problem

MEMOCODE’19 October 9–11, 2019, UCSD, CA, USA 9 October 2019 6 / 23

The Cache-Coherence Problem

Core 0 Core 1

X: 400

Read X

Bus

L1 CacheL1 Cache

X: 500

2 Read X
3Write X

4 Read X

1

Cache Coherence
Problem

Figure: An Illustration of the Cache-Coherence Problem

MEMOCODE’19 October 9–11, 2019, UCSD, CA, USA 9 October 2019 7 / 23

Resiliency to Coherence Failure: An Example

A multithreaded program with each thread running on a different core.
cnt is shared and tmp is local to each thread.

T-0

 tmp = cnt -3;

lock(mlock);

cnt = cnt + tmp;

unlock(mlock);

T-1

tmp = cnt - 2;

lock(mlock);

cnt = cnt + tmp;

unlock(mlock);

T-2

tmp = cnt - 1;

lock(mlock);

cnt = cnt + tmp;

unlock(mlock);

5

7

2

5 2

53

3710

4 5

14 410

(a) Exact execution

T-0

 tmp = cnt -3;

lock(mlock);

cnt = cnt + tmp;

unlock(mlock);

T-1

tmp = cnt - 2;

lock(mlock);

cnt = cnt + tmp;

unlock(mlock);

T-2

tmp = cnt - 1;

lock(mlock);

cnt = cnt + tmp;

unlock(mlock);

5

7

2

5 2

53

358

4 5

12 48

(b) Approximate execution

MEMOCODE’19 October 9–11, 2019, UCSD, CA, USA 9 October 2019 8 / 23

Our Contribution

Enhance performance of multi-threaded programs on shared
memory multicore processors by embracing approximate
computing.

We identify write operations on shared data which are tolerant to
coherence faults.
For the fault tolerant memory writes, we propose a modified
cache-coherence protocol with a reduced overhead of communication.
An auxiliary L1-cache structure to reduce coherency-misses.

MEMOCODE’19 October 9–11, 2019, UCSD, CA, USA 9 October 2019 9 / 23

Sensitivity Analysis of SWAPs

Definition

Coherence Fault: Let P be a multithreaded program and s be a SWAP in
P writing to a shared data x . Let e be the execution of P on an input I .
A coherence fault in s refers to the execution e ′ on the same input I when
the write of data v into x is not communicated to the sharers of x . �

Definition

Approximable SWAP: Given a confidence of inference θ and an
acceptable QoS distortion measure α, a SWAP s in a multithreaded
program P is said to be approximable iff for all executions e of P, the
probability that the program output remains within the acceptable QoS
distortion α in the presence of a coherence fault in s, is at least θ. �

MEMOCODE’19 October 9–11, 2019, UCSD, CA, USA 9 October 2019 10 / 23

Detection of Approximable SWAPs by Hypothesis Testing

Given a SWAP s, we consider the Hypotheses:

H : Pr(X = 1) ≥ θ;H ′ : Pr(X = 1) < θ (1)

Where,

Pr(X = 1) denotes the probability that a coherence fault on the
shared data written by the instruction s keeps the program output
within the acceptable QoS threshold α, and

θ is the user-given confidence of inference.

H and H ′ respectively represent the null and contrary hypothesis.
Note that the verification of the null hypothesis H implies that the
SWAP s under analysis is approximable.

MEMOCODE’19 October 9–11, 2019, UCSD, CA, USA 9 October 2019 11 / 23

Directory-Based Cache-Coherence Protocol

Core
1

Core
2

Core
3

Interconnection network

Core
0

M AA

Private cache

S B B

Private cache

S AB

Private cache

I AB

Private cache

…..

tracking Bits state

1000 M A

tag

state tag state tag state tag state tag

…..S B0110

Shared Memory

..

..

..

Figure: An Illustration of Directory-based Cache-Coherence Protocol

MEMOCODE’19 October 9–11, 2019, UCSD, CA, USA 9 October 2019 12 / 23

The MESI Cache-Coherence Protocol

Req

I->S

Dir

S->S

(1) GetS

(2) Data

Req

I->S

Dir

M->S

E->S

(1) GetS

(3) Data

Owner

M->S

E->S

(2) Fwd-GetS

(3) Data

Req

I->E

Dir

I->E

(1) GetS

(2) Data

Req

I->M

Dir

I->M

(1) GetM

(2) Data [ack=0]

Req

I->M

Dir

M->M

E->M

Owner

M->I

E->I

(1) GetM (2) Fwd-GetM

(3) Data [ack=0]

Req

I->M

S->M

Dir

S->M

Sharer

S->I

(1) GetM

Sharer

S->I

(2) Inv

(2) Inv
(2) Data [ack>0]

(3) Inv-Ack

(3) Inv-Ack

(a) (b)

(c)

(e)

(e)

(f)

(d)

M Modified

E Exclusive

S Shared

I Invalid

GetS: Obtain block in read only mode

GetM: Obtain block in read write mode

Fwd-GetS: Forward GetS request to owner

Fwd-GetM: Forward GetM request to owner

Inv: Change block to invalid state

Inv-Ack: An acknowledgement of block invalidation

Figure: State Machine of MESI Cache-Coherence Protocol

MEMOCODE’19 October 9–11, 2019, UCSD, CA, USA 9 October 2019 13 / 23

Modified MESI Protocol

Req

I->S

Dir

S->S

(1) GetM-A

(2) Data [ack=0]

Req

I->S

Dir

M->S

E->S

Owner

M->S

E->S

(1) GetM-A (2) Fwd-GetM-A

(3) Data [ack=0]

Req

S->S

(1) GetM-A(a)

(b) (c)

Modified

E Exclusive

S Shared

I Invalid

GetM-A: Approximable write-requests by requested cores.

Fwd-GetM-A: Forward GetM-A approximable write

 requests by requested cores to owner

M

Figure: Modified MESI protocol

MEMOCODE’19 October 9–11, 2019, UCSD, CA, USA 9 October 2019 14 / 23

Methodology

Thread Sharing
Analysis

Sensitivity
Analysis

QoS metric

QoS Tol.

Program
transformation

Approx
SWAPs

WRITE Reg<id>, MEMORY<address>

WRITE.approx Reg<id>, MEMORY<address>

transform

SWAP
points

PRE-EXECUTION
 ANALYSIS

EXE EXE Write by Approx SWAP
point

ARCHITECTURAL
SIMULATION

Activate Approx. CCP

CPU

Approx
SWAP

Confidence θ

Figure: Workflow

MEMOCODE’19 October 9–11, 2019, UCSD, CA, USA 9 October 2019 15 / 23

Experimental Setup: Architectural Simulation
Configuration

Parameters Values

Cores 32 cores, Nehalem 2.24GHz

L1 32KB I-Cache, 32KB D-Cache,
32B cache block size, private
per core, 2 way associative, 2
cycles hit latency

L2 64KB per core, 32B cache
block size, 2-way associative,
20 cycles hit latency.

L3 1024KB, 32B cache block size,
8-way associative, S-NUCA,
100 cycles hit latency, MESI
cache coherence protocol

NoC Mesh 4 × 8, 4 Mem-Ctlr

Table: Baseline configuration

Parameters Values

Cores 32 cores, Nehalem 2.24GHz

L1 32KB I-Cache, 32KB D-Cache,
32B cache block size, private
per core, 2 way associative, 2
cycles hit latency

Auxiliary
Cache

256KB, 32B cache block size,8-
way associative, 2 cycles hit la-
tency

L2 64KB per core, 32B cache
block size, 2-way associative,
20 cycles hit latency.

L3 1024KB, 32B cache block size,
8-way associative, S-NUCA,
100 cycles hit latency, Approxi-
mate MESI cache coherence
protocol

NoC Mesh 4 × 8, 4 Mem-Ctlr

Table: Proposed configuration

MEMOCODE’19 October 9–11, 2019, UCSD, CA, USA 9 October 2019 16 / 23

Results - Sensitivity Analysis of SWAPs

Table: Sensitivity analysis of SWAPs by hypothesis testing.

Application LoC QoS Metric QoS Tol. SWAPs Tested SWAPs Appr. % Appr. Time (hrs)

FMM 2945 ARE ≤ 0.1 144 9 6.25 50
OCEAN NC 2731 ARE ≤ 0.1 92 63 68.3 15.6
OCEAN C 4283 ARE ≤ 0.1 88 36 40.9 16.6

RAYTRACER 5783 PSNR ≥ 20 156 98 62.8 17
CHOLESKY 3847 PE ≤ 0.1 190 85 44.7 8.10

FFT 668 NME ≤ 0.1 24 19 79.1 0.82
LU NC 494 NME ≤ 0.1 28 20 71.4 0.51
LU C 916 NME ≤ 0.1 27 20 74 0.52

RADIX 654 matching 0 31 21 67.7 0.8
ARE : Average Relative Error; Appr.:Approximable; %Appr. : Percentage of the tested SWAPs inferred
approximable; LoC: Lines of Code; NME : Normalized Mean Error; PE : Percent Error; QoS: Quality
of Service; Tol. : Tolerance

An average of 57% of the tested SWAPs are approximable

On average 12 hrs analysis time.

MEMOCODE’19 October 9–11, 2019, UCSD, CA, USA 9 October 2019 17 / 23

Results - Reduced CPU-Cycles and Energy Footprint with
Approximate MESI Protocol

-5
 0
 5

 10
 15
 20
 25
 30
 35

FM
M

OCEA
N-N

C

OCEA
N-C

RA
YT

RA
CER

CHOLE
SK

Y
FF

T
C-L

U

NC-L
U

RA
DIX

AV
ER

AG
EPe

rf
o
rm

a
n
ce

 g
a
in

 (
in

 %
)

CPU-cycles
Energy

Figure: CPU-cycles, energy reduction (%) in comparison with baseline execution
(exact)

MEMOCODE’19 October 9–11, 2019, UCSD, CA, USA 9 October 2019 18 / 23

Results - Comparison with Related Work

 0

 2

 4

 6

 8

 10

 12

FM
M

OCEA
N-N

C

OCEA
N-C

RA
YT

RA
CER

CHOLE
SK

Y
FF

T
C-L

U

NC-L
U

RA
DIX

AV
ER

AG
EPe

rf
o
rm

a
n
ce

 g
a
in

 (
in

 %
)

CPU-cycles
Energy

Figure: CPU-cycles, energy reduction (%) in comparison with the work of P. V.
Rengasamy et.al., Exploiting staleness for approximating loads on CMPs,
PACT’15. [1]

MEMOCODE’19 October 9–11, 2019, UCSD, CA, USA 9 October 2019 19 / 23

Results - Reduced Coherence-invalidation and Remote
cache-loads

-60
-50
-40
-30
-20
-10

 0
 10
 20
 30

FM
M

OCEA
N-N

C

OCEA
N-C

RA
YT

RA
CER

CHOLE
SK

Y
FF

T
C-L

U

NC-L
U

RA
DIX

AV
ER

AG
E

Pe
rc

e
n
ta

g
e

L1
Coherence-Inv

Remote-cache-load

Figure: L1-D cache misses, Coherence
invalidation and Remote-cache-load
(%) in comparison with baseline.

On average,

0.26% reduction in L1-D misses

1.45% reduction in invalidation
messages due to coherence and

15.46% reduction in request to
load data messages from
remote caches.

MEMOCODE’19 October 9–11, 2019, UCSD, CA, USA 9 October 2019 20 / 23

Conclusion

We present a sensitivity analysis technique for instructions in a
multi-threaded program, in order to determine the ones which are
approximable.

An average of 57% of the tested SWAPs are approximable in the
considered applications from the SPLASH 3.0 applications.

In order to reduce the cost of implementing cache-coherency in a
processor, we propose an approximate cache-coherence protocol that
is invoked on selective write operations.

On an average, our approach shows 15.5% gain in terms of CPU
cycles and 11.5% reduction in energy used.

MEMOCODE’19 October 9–11, 2019, UCSD, CA, USA 9 October 2019 21 / 23

Thank You!

Questions?

MEMOCODE’19 October 9–11, 2019, UCSD, CA, USA 9 October 2019 22 / 23

References

Prasanna Venkatesh Rengasamy, Anand Sivasubramaniam,
Mahmut T. Kandemir, and Chita R. Das.
Exploiting staleness for approximating loads on cmps.
In Proceedings of the 2015 International Conference on Parallel
Architecture and Compilation (PACT), pages 343–354, Washington
DC, USA, 2015. IEEE Computer Society.

MEMOCODE’19 October 9–11, 2019, UCSD, CA, USA 9 October 2019 23 / 23

	The Cache-Coherence Problem in Multicore Processors
	Our Contribution: Approximate Computing by Selective Relaxation in Cache-Coherency
	Identification of Resilient SWAPs in a Program
	Modified MESI Cache-Coherence Protocol
	Results
	Conclusion

