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Abstract

Speculative execution is an optimization technique in modern processors.
Branch predictionand load value speculation are examples of speculative
execution used in modern pipelined processors to avoid an execution stall.
However, speculative executions incur a performance penalty as an execu-
tion roll-back, when there is a misprediction. In this work, we propose to aid
speculative execution with approximate computing by relaxing the penalty as-
sociated with a misprediction. We propose a sensitivity analysis of load and
branch instructions in order to identify the ones which can execute without any
execution roll-back in the pipeline and yet can assert a certain user specified
quality of service of the application with a probabilistic guarantee.
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Figure 1: Instruction classification in approximate computing

Sensitivity Analysis: A Motivating Example

vo i d SOR execute ( . . . ) {
. . .

//@cache-miss-heavy
Gip1 = G[ i +1] ;
//@end
f o r ( j =1; j<Nm1; j++){
//@cache-miss-heavy
Gi [ j ] = omega ove r f ou r ∗
(Gim1 [ j ]+Gip1 [ j ]+Gi [ j −1]
+Gi [ j +1] + one minus omega
∗ Gi [ j ] ) ;
//@end

}
. . .

}

Inst. Addr. Assembly Code D1 Misses
402670 movsd (%rax), %xmm0 249999
402609 mov (%rax), %rax 250
402658 movsd (%rax), %xmm1 250
4026ac movsd (%rax), %xmm1 250
402651 mov -0x10(%rbp), %rax 244
402678 mov -0x34(%rbp), %eax 244
402685 mov -0x18(%rbp), %rax 243

2.7%D1 Cache Miss Rate : 

22 LOAD Instructions
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Contributions

A systematic method for instruction classification with quantitative
confidence guarantee. The contributions are:

•A Dynamic analysis to automatically classify Instruction as sensi-
tive or insensitive.

• Experimental results to demonstrate the gain in selective approxi-
mation.

• Propose a roll-back free execution for load/branch mis-prediction.

Definition : Sensitive Instruction

Approximable Load: Given a confidence of inference θ and an appli-
cation’s QoS distortion limit α, a load instruction I is approximable
if and only if it is asserted with a probability at least θ that an execu-
tion with an in-exact load value into the respective load register does
not distort the application output beyond the limit α.
Approximable Branch: Given a confidence of inference θ and an ap-
plication QoS distortion limit α, a branch B is approximable if and
only if it is asserted with a probability at least θ that a wrong path ex-
ecution along an incorrect branch of B does not distort the application
output beyond α.

Sensitivity Analysis Using Hypothesis Testing

For every i ∈ I, we propose a hypothesis that ∀e ∈ E,∀` ∈
`ei , (ie, `) → (iapprox, `) =⇒ R ∈ QoS , where E, `ei , (ie, `) and
(iapprox, `). Let us denote such an hypothesis by K. Test the follow-
ing null and contrary hypothesis:

H : Pr(K) < θ

H ′ : Pr(K) ≥ θ
(1)

where Pr(K) is the probability that the hypothesis K is true.

Sequential Probability Ratio Test

• SPRT is to decide whether additional experiments need to be per-
formed to accept or reject a hypothesis on the basis of the previously
observed outcomes.
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Figure 2: Framework of Dynamic Sensitivity Analysis with Hypothesis Testing

Workflow

Figure 3: Schematic experimentation workflow of our proposed work

Fault injection in load/branch instruction
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Figure 4: Fault injection using Dynamic Binary Instrumentation[1]

Reliability of Sensitivity Analysis

Application Error-metric Acc. Err.
Load Sensitivity

Cache miss % Analyzed Approx. QoS Loss
SOR NME ≤ 0.5 0.26 22 3 0.10
LU NME ≤ 0.5 1.13 47 1 0.48

Soplex % Error ≤ 0.5 2.85 1136 10 0.01
GemsFDTD NME ≤ 0.5 9.87 110 10 0.03

JPEGEncoder PSNR ≥ 10.5 0.52 40 3 23.38
StreamCluster MDE ≤ 0.5 0.43 169 10 0.16
Bzip2 (v1.0.6) PSNR ≥ 10.5 2.51 301 10 NIL

Table 1: Approximate load instruction reliability analysis

Application Error-metric Acc. Err.
Branch Sensitivity

Mispred. % B. Intr. Analyzed Approx. QoS Loss
SOR Normalized mean error ≤ 0.5 9.47 25 8 5 0.27
LU Normalized mean error ≤ 0.5 0.35 38 15 1 0.00

Soplex Percent error ≤ 0.5 4.61 2489 100 5 0.06
GemsFDTD Normalized mean error ≤ 0.5 3.71 3834 100 16 0.00

JPEGEncoder Peak Signal to Noise Ratio ≥ 10.5 11.27 1481 100 13 19.06
StreamCluster Mean distance error ≤ 0.5 12.20 867 100 16 0.39
Bzip2 (v1.0.6) Peak Signal to Noise Ratio ≥ 10.5 2.31 867 100 6 NIL

Table 2: Approximate branch instruction reliability analysis
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Figure 5: QoS comparison with penalty free execution scheme

Architectural Simulation

System Configuration

Architecture x86 with clock frequency of 3.4GHz, uni-cores
Type of Pipeline In-order pipeline of width 1
Branch Predictor Bimodal, penalty: 8 cycles
Private L1 Cache 32KB, 8-way, 64 byte blocks, 3-cycles latency
Shared L2 Cache 256KB, 8-way, 64 byte blocks, 32-cycles latency

Main Memory A miss in L2 Cache is considered as a hit in the
Main memory with a miss penalty of 200-cycles

Power Model McPAT

Table 3: System configuration in an architectural simulator[2]

Module modified in architectural simulator[2]
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Figure 6: Roll-back free execution in approximate branch and load instruction

Evaluation of Dynamic Sensitivity Analysis
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Figure 7: Performance gain in load approximation
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Figure 8: Energy gain in load approximation
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Figure 9: Performance and energy gain in branch approximation

Conclusion
• Present a statistical analysis of load and branch instructions in an

application to classify into sensitive and insensitive one.

• The inference comes with a probabilistic guarantee.

•Observed that the approximable loads, branches can tolerate mis-
predictions in a speculative execution to produce an output with
acceptable QoS.

•We present a misprediction penalty free execution framework for
approximable loads and branches, and show promising perfor-
mance and energy benefits by architectural simulation.
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